Oxford Falls Grammar School

martens consulting engineer

Preliminary Site Investigation,
Propposed carpark at 1078 Oxford
Falls Road, Oxford Falls, NSW.

P1907548JR01V04 March 2021

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to to provide a Preliminary Site Investigation at the subject site in accordance in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Oxford Falls Grammar School (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© March 2021 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-9999**

Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

Document and Distribution Status							
Auth	nor(s)	Reviewer(s)		Project Mana	ger Signatur		ature
William Xu		Brett McLenn Jeff Fulton	an	Jeff Fulton		Jun	27
ċ					Distributi		
Revision No.	Description	Status	Release Date	File Copy	Oxford Falls Grammar School	EPM Projects	
1	Draft for Client comment	Draft	14.02.2020	1E 1P	1P	1P	
2	Amended draft report	Draft	19.02.2020	1E 1P	1P	1P	
3	Final for submission	Final	20.03.2020	1E 1P	1P	1P	
4	Final for submission	Final	17.03.2021	1E 1P	1P	1P	

Distribution Types: F = fax, H = hard copy, P = PDF document, E = other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 1	INTRODUCTION	7
1.1	Overview	7
1.2	Previous Assessments	7
1.3	Proposed Development	7
1.4	Objectives	7
1.5	Project Scope	8
1.6	Guideline Reference Documents	8
2 :	SITE DESCRIPTION	9
2.1	Site Details	9
2.2	Hydrogeology	10
3 :	SITE CONTAMINATION ASSESSMENT	11
3.1	Council Historical Site Records (JK, 2019)	11
3.2	NSW EPA Records	11
3.3	External Potentially Contaminating Activities	12
3.4	Aerial Photograph Review	12
3.5	Site Walkover Inspection	13
3.6	Preliminary Areas of Environmental Concern/Contaminants of Po Concern	otential 13
3.7	Previous Assessment Results	13
4 I	DISCUSSION AND CONCLUSION	15
	RECOMMENDATIONS	
6 I	LIMITATIONS STATEMENT	17
7 I	REFERENCES	18

Attachments

ATTACHMENT A: SITE OVERVIEW

ATTACHMENT B: AERIAL PHOTOGRAPHY

ATTACHMENT C: PROPOSED DEVELOPMENT PLANS

ATTACHMENT D: EIS WASTE CLASSIFICATION ASSESSMENT AND SOIL SUITABILITY

ANALYSIS (2017)

Tables

Table 1: Site background information.	9
Table 2: Available hydrogeological information.	, 10
Table 3: Available Council records.	, 11
Table 4: Potentially contaminating activities.	, 11
Table 5: Aerial photograph observations from 1956 to 2019.	, 12
Table 6: Preliminary areas of environmental concern and contaminants potential concern.	

General Abbreviations

AASS	Actual acid sulfate soil	MBT	Monobuty
ABC	Ambient background concentrations	MNA	Monitored
ACM	Asbestos containing material	MPE	Multi phas
AEC	Area of environmental concern	NAPL	Non aque
AF	Asbestos fines	NATA	National A
AMP	Asbestos Management Plan	ND	No data
ANZECC	Australia and New Zealand Environment Conservation Council	NEPC	National E
ANZG	Australian and New Zealand Governments	NEPM	National E
ASC NEPM	National Environmental Protection (Assessment of Site Contamination) Measure (2013)	OCP	Organoch
ASS	Acid sulfate soil	OEH	NSW Office
ASSMAC	Acid Sulfate Soils Management Advisory Committee	OPP	Organoph
AST	Above ground storage tank	PACM	Potential o
BGL	Below ground level	PAH	Polycyclic
ВН	Borehole	PASS	Potential o
BTEXN	Benzene, toluene, ethylbenzene, xylene, naphthalene	PCB	Polychlorin
CEMP	Construction Environmental Management Plan	PCEMP	Post Const
COC	Chain of custody	PESA	Preliminary
COPC	Contaminants of potential concern	PFAS	Per- and p
DA	Development application	PID	Photoionis
DBT	Dibutyltin	ppb	Parts per b
DEC	Department of Environment and Conservation	ppm	Parts per n
DECC	Department of Environment and Climate Change	PQL	Practical of
DNAPL	Dense non aqueous phase liquid	PSI	Preliminar
DP	Deposited Plan	QA/QC	Quality as
DPI	NSW Department of Primary Industry	RAC	Remediati
DPIW	NSW Department of Primary Industry – Water	RAP	Remedial
DQI	Data quality indicators	HHRA	Human He
DQO	Data quality objectives	RPD	Relative p
DSI		SAC	
EAC	Detailed Site Investigation		Site assessi
EIL	Ecological assessment criteria	SAQP SEPP	Sampling of State Envir
	Ecological investigation level		
EMP	Environmental Management Plan	SIL	Soil investig
EPA	NSW Environmental Protection Authority	SOP	Standard
EQL	Estimated quantitation limit (Interchangeable with PQL and LOR)	SWL	Standing v
ESA	Environmental Site Assessment	SWMS	Safe Work
ESL	Ecological screening level	TB	Trip blank
FA	Fibrous asbestos	TBT	Tributyl tin
GIL	Groundwater investigation level	TCLP	Toxicity ch
HIL	Health investigation level	TEQ	Toxic equi
НМ	Heavy metals	TP	Test pit
HSL	Health screening level	TPH	Total petro
IA	Investigation area	TRH	Total reco
ISQG	Interim Sediment Quality Guideline	TS	Trip spike
ITP	Inspection Testing Plan	UCL	Upper cor
LGA	Local government area	UPSS	Undergrou
LNAPL	Light non aqueous phase liquid	UST	Undergrou
LOR	Limit of reporting (Interchangeable with EQL and PQL)	VHC	Volatile ho
MA	Martens & Associates Pty Ltd	VOC	Volatile or
mAHD	Metres, Australian Height Datum	WHS	Work heal
	Metres below ground level	WHSP	Work Heal

MBT	Monobutyltin
MNA	Monitored natural attenuation
MPE	Multi phase extraction
NAPL	Non aqueous phase liquid
NATA	National Association of Testing Authorities
ND	No data
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
OCP	Organochloride pesticides
OEH	NSW Office of Environment and Heritage
OPP	Organophosphorus pesticides
PACM	Potential asbestos containing material
PAH	Polycyclic aromatic hydrocarbons
PASS	Potential acid sulfate soil
PCB	Polychlorinated biphenyl
PCEMP	Post Construction Environmental Management Plan
PESA	Preliminary Environmental Site Assessment
PFAS	Per- and polyfluoroalkyl substances
PID	Photoionisation detector
ppb	Parts per billion
ppm	Parts per million
PQL	Practical quantitative limit (Interchangeable with EQL and LOR)
PSI	Preliminary Site Investigation
QA/QC	Quality assurance / quality control
RAC	Remediation acceptance criteria
RAP	Remedial Action Plan
HHRA	Human Health Risk Assessment
RPD	Relative percentage difference
SAC	Site assessment criteria
SAQP	Sampling and Analysis Quality Plan
SEPP	State Environmental Planning Policy
SIL	Soil investigation level
SOP	Standard operating procedure
SWL	Standing water level
SWMS	Safe Work Method Statement
TB	Trip blank
TBT	Tributyl tin
TCLP	Toxicity characteristics leaching procedure
TEQ	Toxic equivalency factor
TP	Test pit
TPH	Total petroleum hydrocarbons
TRH	Total recoverable hydrocarbons
TS	Trip spike
UCL	Upper confidence limit
UPSS	Underground petroleum storage system
UST	Underground storage tank
VHC	Volatile halogenated compounds
VOC	Volatile organic compounds
WHS	Work health and safety
WHSP	Work Health and Safety Plan

1 Introduction

1.1 Overview

This report, prepared by Martens and Associates (MA), documents a Preliminary Site Investigation (PSI) of potentially contaminating activities, to support a Review of Environmental Factors (REF) for construction of a carpark (the Project) for Oxford Falls Grammar School at 1075 Oxford Falls Road, Oxford Falls, NSW ('the site').

The investigation area (IA) for this PSI is limited to the southeast portion of the school site, as shown in Attachment A.

1.2 Previous Assessments

JK Environmental previously undertook a Stage 1 Environmental Site Assessment (report reference E30807Brpt Rev2) for a proposed kiosk in the southwest portion of the school site [November 2019] (JK, 2019).

JK Geotechnics previously provided a geotechnical investigation (report reference 30807SYrpt) for the proposed sporting facility, car park and playing field in the southern portion of the site [October 2017] (JK, 2017).

Environmental Investigation Services (EIS) undertook a Waste Classification Assessment and Soil Suitability Analysis (report reference E30807KMlet-WC_rev1) for the playing field in the southwest portion of the site [November, 2017] (EIS, 2017). The testing undertaken as part of EIS (2017) covers the IA for this PSI. EIS's (2017) results and findings are summarised in Section 3.8, with a copy of their assessment provided in Attachment D.

1.3 Proposed Development

The proposed site development involves the construction of an at grade car park as documented in the plans provided by AJC (2021).

The proposed development plans are provided in Attachment C.

1.4 Objectives

Investigation objectives include:

- o Identification of historic and current potentially contaminating site activities.
- Evaluation of areas of environmental concern (AEC) and associated contaminants of potential concern (COPC) within the IA

- Assess identified AEC and associated COPC.
- Provide comment on the suitability of the IA for the future carpark use, and where required, provide recommendations for additional investigations.

1.5 Project Scope

The scope of works includes:

- o Walkover inspection to review current land use, potential contaminating activities and neighbouring land use.
- Site history review using aerial photographs and available historic records.
- Review of previous investigations on the site related to contamination.
- Review of NSW EPA notices under the Contaminated Land Management Act (1997).
- Preparation of a report in general accordance with the relevant sections of NSW EPA (2020) and ASC NEPM (2013) and EPA (2017).

1.6 Guideline Reference Documents

- ASC NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure. Referred to as ASC NEPM (2013).
- o NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

2 Site Description

2.1 Site Details

Site information is summarised in Table 1, and site location and general surrounds shown in Attachment A.

Table 1: Site background information.

Item	Description / Detail
Site address	1078 Oxford Falls Road, Oxford Falls, NSW.
Legal Identifier	Lot 100 DP 1240806
Approximate site area	4.2 ha (Sixmaps, 2019)
Approximate IA area	0.5 ha (Sixmaps, 2019)
Local Government Area	Northern Beaches Council
Current zoning and land use	Zoned RE1 – Public Recreation (Planning Portal, 2019). Site is currently used for as a primary and secondary school.
Site description	Oxford Falls Grammar School at the north and southeast portion of the site, and a sports field at the southwest portion of the site.
Surrounding land uses	Church to the west of the site. Low density residential dwellings east and south.
Topography	The site is relatively flat with grades < 5%. Site elevation ranges between approximately 79 mAHD in the north eastern portion and 73 mAHD in the western portion of the site (Google Earth Pro. 2019).
Expected geology	The Sydney 1:100,000 Geological Sheet 9030 describes site geology as Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses. The NSW Environment and Heritage eSPADE website identifies the northeast portion of the site as having soils of the Hawkesbury landscape comprising of shallow discontinuous lithosols / siliceous sands associated with rock outcrops; earth sands, yellow earths and some yellow podzolic soils on inside of benches and along joints and fractures; localised yellow and red podzolic soils associated with shale lenses; siliceous sands and secondary yellow earths along drainage lines. The remainder of the site have soils of the Oxford Falls landscape having moderately deep to deep earthy sands, yellow earths, siliceous sands on slopes; deep leaches sands, podzols and grey earths on valley floors.
Surface hydrology	Drainage of the site is via overland flow northwest, to an unnamed tributary of Middle Creek (which bisects the school site). The unnamed tributary is located along the northeast boundary of the IA.

2.2 Hydrogeology

Review of WaterNSW Real-time Water Database, indicated two groundwater bores within 500 m of the site, as summarised in Table 2.

Table 2: Available hydrogeological information.

Bore Identification	Record Date	Intended Use	Standing Water Level (mbgl)	First Water Bearing Zone (mbgl) and Substrate	Distance and Direction from IA
GW108250	2007	Recreation	21.0	Sandstone	350 m southwest
GW032798	1970	Domestic	4.8	Sandstone	450 m northwest

Groundwater inflow was encountered during a geotechnical investigation by JK (2017) between 3-5 mbgl, with standing water levels between 2.8-4.5 mbgl.

No springs were listed within 500 m of the site in the NSW Government Hydrography Spatial Data (SEED, 2019).

Should further information on permanent site groundwater conditions be required, an additional assessment would need to be carried out (i.e. installation of groundwater monitoring bores / ongoing groundwater monitoring).

3 Site Contamination Assessment

3.1 Council Historical Site Records (JK, 2019)

One historic development record was held by Council for the site. Details are summarised in Table 3 and records can be found in JK (2019).

Table 3: Available Council records.

Lot ID	Year	Record Number	Description	
Lot 100 DP 1240806	1979	3675/P1 079- 1080	Erection of stages of a primary and infants school comprising twelve classrooms, library, hall and administration office, playing field, carpark and associated landscaping. The enclosed pool and caretaker's cottage were to be retained. Proposed playing field involved site filling for flat surface.	

3.2 NSW EPA Records

No sites within 500 m of the IA were identified on the list of NSW contaminated sites notified to the EPA as required by the Contaminated Land Management Act (1997) and the Environmentally Hazardous Chemicals Act (1985).

One site within 500 m of the IA was listed on the EPA public register required under section 308 of the Protection of the Environment Operations Act 1997 (the POEO Act), which lists licences, notices penalty notices and convictions, is summarised in Table 4.

Table 4: Potentially contaminating activities.

Licence Number	Site Name	Approximate Distance from Site Boundary	Direction from Site	Gradient from Site
4584	Numeve Pty Ltd	290 m	Northeast	Up gradient

The licenced activities include the recovery of general waste, waste storage and application of herbicides to waterways.

Due to the distance and proximinity from the site, the above location is not expected to have impacted near surface soils or groundwater within the IA.

Due to the above site being downstream of the IA, the above activity is also unlikely to have impacted surface water at the IA.

3.3 External Potentially Contaminating Activities

No potentially contaminating activities, such as service stations, mechanics and dry cleaners, were identified within 500 m of the site.

3.4 Aerial Photograph Review

Aerial photographs taken of the site during between 1956 and 2019, were reviewed to investigate historic site land uses (Table 4). Copies of aerial photographs from 1956 to 2009 are provided in JK (2019), and are reproduced as shown in Attachment B along with a recent site aerial from Nearmap 2019.

The aerials indicated that the IA was cleared prior to 1956, and a large shed constructed between 1961 and 1965. The large shed was demolished between 1982 and 1991, and the current site conditions were constructed between 1991 and 2005.

Table 5: Aerial photograph observations from 1956 to 2019.

	ii priologiapri obscivations trotti	., 00 10 20 171
Year (Source)	IA Activity	Surrounding Land Use
1956 (LIR)	The site was cleared.	Surrounding land was rural residential properties with market gardens and orchards, particularly to the west.
1961 (LIR)	Little to no change from previous.	Sheds constructed to the west, otherwise little to no change from previous.
1965 (LIR)	A large shed (possible warehouse) was constructed to the west of the IA which partly protruded into the IA.	Sheds constructed to the north, otherwise little to no change from previous.
1970 (LIR)	Little to no change from previous.	Little to no change from previous.
1982 (LIR)	Little to no change from previous, minor extension to eastern side of shed.	A number of sheds in the north in the site demolished, otherwise little to no change from previous.
1991 (LIR)	Large shed was demolished.	Sheds demolished to the west, otherwise little to no change from previous.
2005 (LIR)	The current oval was constructed.	Oxford Falls Grammar School has been constructed. The area west of the site was no longer used for agricultural purposes and a church has been constructed to the west of the site. Residential development constructed to the east.
2009 (LIR)	Little to no change from previous.	Little to no change from previous.
2019 (Nearmaps)	Little to no change from previous.	Little to no change from previous.

3.5 Site Walkover Inspection

Observations during the site walkover inspection 17 December 2019, were as follows:

- The IA was being used as a sports field with an unnamed tributary of Middle Creek flowing northwest along the northern and eastern boundary of the IA.
- The school site was bisected by the tributary of Middle Creek along a southeast to northwest transect.
- The site was bounded by Oxford Falls Road to the east, Dreadnought Road to the south, Wakehurst Parkway to the west and bush to the north.
- The IA appeared to be composed of fill to level the sports field, as observed from the raised levee banks from the unnamed tributary.
- No other obvious signs of contamination (i.e. asbestos, soil staining, odours) were noted.

3.6 Conceptual Site Model

3.6.1 Preliminary Areas of Environmental Concern/Contaminants of Potential Concern

Our assessment of site AEC and COPC (Table 6) for the IA was made on the basis of available site history, aerial photograph interpretation, site walkover and geotechnical drilling (JK, 2017).

Table 6: Preliminary areas of environmental concern and contaminants of potential concern.

AEC	Potential for Contamination	COPC
AEC A	Fill from unknown sources has the potential to add contamination including hydrocarbons, heavy metals, pesticides and asbestos.	HM, TRH, BTEXN, PAH, OCP / OPP and asbestos
AEC B Former shed including 5 m curtilage	Pesticides and heavy metals may have been used underneath past shed for pest control. Building construction may include PACM, zinc treated (galvanised) metals, and lead based paints. Garage may have previously stored fuels, oils and chemicals.	HM, TRH, BTEXN, PAH, OCP / OPP and asbestos

3.6.2 Previous Assessment Results

Subsurface soil investigation by EIS (2017) to support a waste classification assessment and soil suitability analysis within the sports

playing field involved the excavation of twenty one boreholes, of which ten were inside the IA for this investigation. Fill was observed up to 2.5 mbgl (BH4) and alluvium up to 5.5 mbgl (BH4).

Soil samples were sent to a NATA registered laboratory (Envirolab Services) by EIS (2017) for soil analysis, which involved:

- o Fifteen samples for HM, BTEXN, PAH, TRH;
- Ten samples for asbestos;
- Five samples for OCP and OPP.

BTEXN, TRH, OCP and OPP results were all below laboratory practical quantitation limits (PQL), and all other results were below ASC NEPM (2013) site assessment criteria (SAC) for Residential A.

No asbestos was detected in samples analysed.

3.6.3 CSM Discussion

Preliminary AEC have been identified in Section 3.6.1 as areas under the former shed and also fill placed for the sports field. Given the testing completed by EIS (2017) was undertaken within the AEC areas identified and that results of laboratory testing of soils showed no signs of contamination, there appears to be no significant site source receptor pathway link.

4 Discussion and Conclusion

The review of the site history indicated that the IA was cleared prior to 1956 and a large shed constructed between 1961 and 1965. The shed was demolished between 1982 and 1991, and the current Oxford Falls Grammar school oval has been in place since.

Potential contamination sources are summarised as:

- o The entire IA which appears to be filled to level the sports field.
- o Former shed which occupied a small eastern portion within the IA.

Subsurface soil investigation by JK (2017) indicated fill was observed up to 2.5 mbgl (BH4) and alluvium up to 5.5 mbgl (BH4).

EIS (2017) documented a waste classification and soil suitability analysis which covered the entire IA and preliminary AEC noted in this PSI. Samples were sent to a laboratory and assessed against COPC noted in this PSI.

Soil analysis indicated all samples to be below ASC NEPM (2013) Residential A guidelines. In light of this, the fill across the entire IA and former shed AEC is not considered to pose a risk of contamination and does not require further investigation.

Overall, the IA is considered to have a low risk of broad scale or localised contamination, and will be suitable for the proposed carpark development. It should be noted, however, that past filling undertaken from unknown sources still has a risk of contamination. This risk should be managed by implementing an appropriately prepared unexpected finds protocol during construction. This document should be made available to all contractors working on the site and included as part of the site induction process.

5 Recommendations

Based on the findings of the historical analysis and EIS (2017) soil analysis results, no further investigation for contamination is warranted.

An unexpected finds protocol is to be prepared prior to works commencing on the site. If any unexpected finds (such as fibro material, odours or soil staining) are encountered during site works, the unexpected find will require assessment by MA to determine requirements for additional investigation and / or remedial action.

If any soil material is removed from site, a formal waste classification assessment shall be required in accordance with the NSW EPA Waste Classification Guidelines (2014).

6 Limitations Statement

The PSI was undertaken in line with current industry standards.

It is important, however, to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land-uses. Therefore, this report should not be read as a guarantee that no contamination shall be found on the site. Should material be exposed in future which appears to be contaminated or inconsistent with natural site soils, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of the current development proposal. No reliance on this report should be made for any other investigation or proposal. Martens & Associates Pty Ltd accepts no responsibility and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

7 References

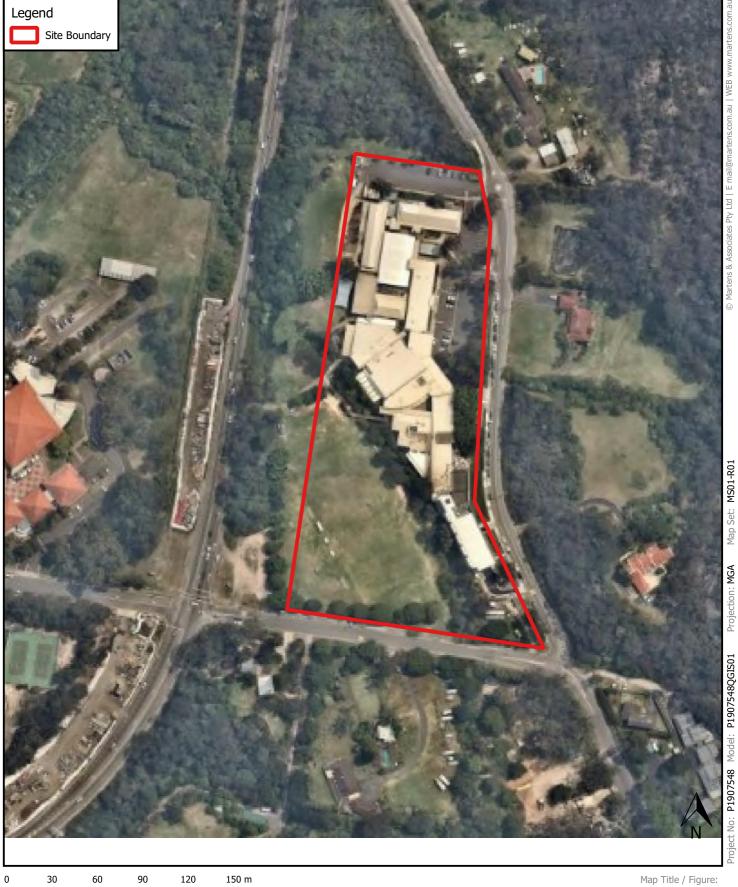
- Allen Jack + Cottier (2021), OFGS Carpark, Project No. 18025, Drawing No. REF001 (AJC, 2021).
- ASC NEPM (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure, 2013.
- Environmental Information Services (2017) Waste Classification Assessment and Soil Suitability Analysis (Proposed playing field development at Oxford Grammar School). Ref. E30807KMlet-WC rev1 (EIS, 2017).
- Google Earth Pro (2019).
- Herbert C., 1983, Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney.
- JK Geotechnics (2017) Geotechnical Investigation (Proposed new sporting facility, car park and playing field at Oxford Grammar School). Ref. 30807SYrpt (JK, 2017).
- JK Environmental (2019) Stage 1 Environmental Site Assessment (Proposed new kiosk development at Oxford Grammar School). Ref. E30807Brpt Rev. 2 (JK, 2019). Nearmap Aerial photographs (2019).
- NSW Department of Environment & Heritage (eSPADE, NSW soil and land information), www.environment.nsw.gov.au.
- NSW Department of Planning, Industry and Environment (Planning Portal, 2019) www.planningportal.nsw.gov.au/spatialviewer.
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (2014) Waste Classification Guidelines.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, 2nd Edition
- Sixmaps (2019)
- State Environmental Planning Policy No. 55 Remediation of Contaminated Land.
- WaterNSW Real-Time Water Database, accessed 16 December 2019, https://realtimedata.waternsw.com.au/water.stm.

Attachment A: Site Overview

1:1500 @ A4

Map Title / Figure: Site Plan

18/12/2019


Map 01
1078 Oxford Falls Road, Oxford Falls, NSW
Proposed Carpark
Preliminary Site Investigation
Oxford Falls Grammar School

Map Site Project Sub-Project Client Date

Attachment B: Aerial Photography

1:2500 @ A4

2019 Aerial Image (Nearmaps, 2019)

Map 01

Мар

Site

Project

Date

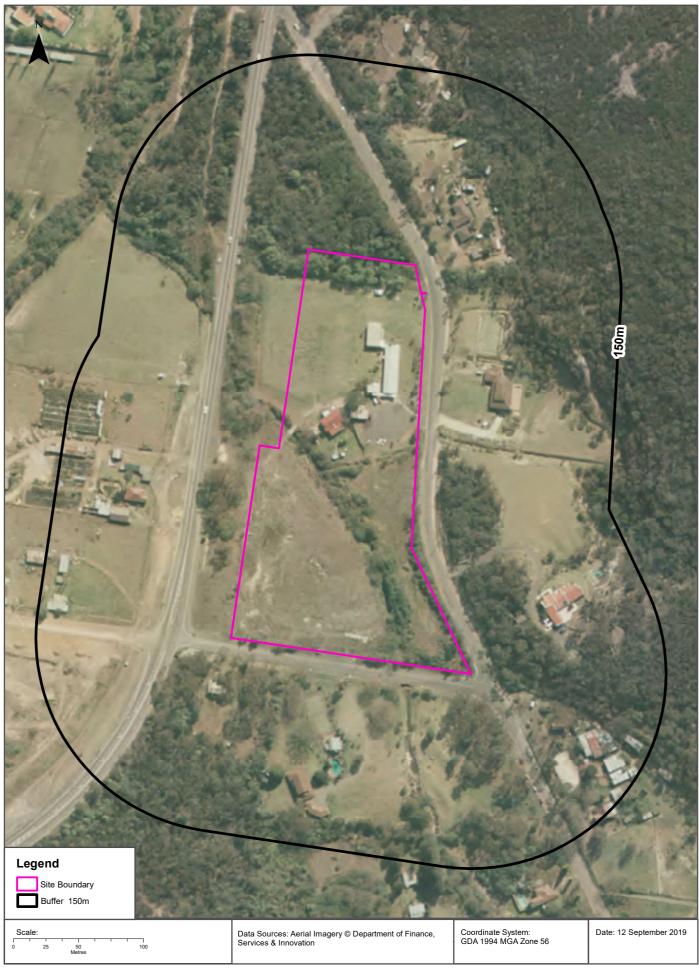
Sub-Project Client

1078 Oxford Falls Road, Oxford Falls, NSW

Proposed Carpark

Preliminary Site Investigation
Oxford Falls Grammar School

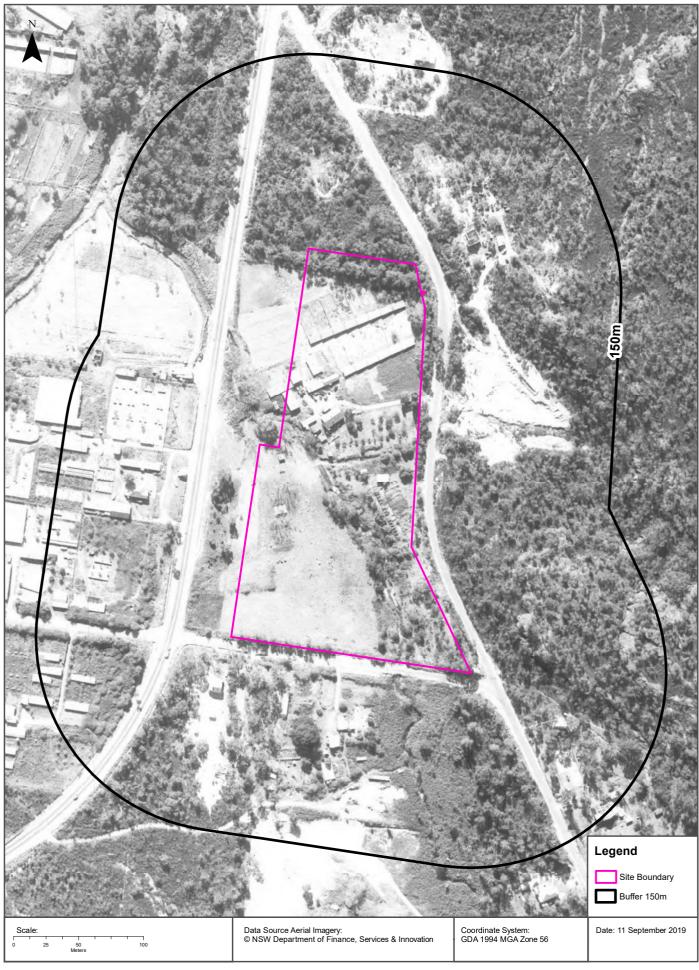
18/12/2019



Aerial Imagery 1991 Wakehurst Parkway, Oxford Falls, NSW 2100

Aerial Imagery 1982 Wakehurst Parkway, Oxford Falls, NSW 2100

Aerial Imagery 1970 Wakehurst Parkway, Oxford Falls, NSW 2100





Attachment C: Proposed Development Plans

DRAWING LIST

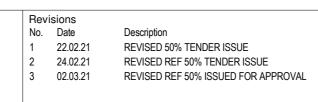
REF101 SITE PLAN REF201 GROUND LEVEL PLAN

REF202 LEVEL 1 PLAN TO BE CARRIED OUT AS EXEMPT DEVELOPMENT AND IS NOT PART OF THE REF
REF203 ROOF PLAN TO BE CARRIED OUT AS EXEMPT DEVELOPMENT AND IS NOT PART OF THE REF

REF311 ELEVATIONS - SHEET 1 REF312 ELEVATIONS - SHEET 2

REF321 SECTIONS
REF401 SHADOW DIAGRAMS

REF601 PERSPECTIVE VIEW 1 FROM DREADNOUGHT ROAD
REF602 PERSPECTIVE VIEW 2 FROM K - BLOCK


REF603 PERSPECTIVE VIEW 3 FROM PROPOSED FIELD

ABBREVIATIONS

A/C AFSL	AIR CONDITIONING ABOVE STRUCTURAL FLOOR LEVEL	FIP FLR	FIRE INDICATOR PANEL FLOOR	REF RA	REFRIGERATOR RETURN AIR
AL	ALUMINIUM	FP	FIBROUS PLASTER	RAD	RADIUS
			FIRE RESISTANCE LEVEL		
AO	ACCESS OPENING	FRL		RC	REINFORCED CONCRETE
AP	ACCESS PANEL	FW	FLOOR WASTE TO SEWER	RGH	RANGE HOOD
AT	ACOUSTIC TILE	GALV	GALVANISED	RH	ROBE HOOK
В	BOLLARD	GD	GRATED DRAIN	RHS	RECTANGULAR HOLLOW SECTION
BAL	BALUSTRADE	GL	GLAZING	RJ	RENDER JOINT (V-JOINT)
BDY	BOUNDARY	GND	GROUND	RL	REDUCED LEVEL
BH	BOREHOLE	GPO	GENERAL PURPOSE (POWER) OUTLET	ROW	RIGHT OF WAY
BHD	BULKHEAD	GR	GRAB RAIL	RS	ROLLER SHUTTER
BK	BRICK	GRANO	GRANOLITHIC	RW	RETAINING WALL
BLDG	BUILDING	GRC	GLASS REINFORCED CONCRETE/CEMENT	RWH	RAINWATER HEAD
BLK	BLOCKWORK	GT	GATE	RWO	RAINWATER OUTLET TO STORMWAT
BN	BULLNOSE	GTP	GREASE TRAP	RWP	RAINWATER PIPE
BOE	BRICK-ON-EDGE	HYD	HYDRANT	SA	SUPPLY AIR
BSN	BASIN	HC	HOSE COCK	SC	STEEL COLUMN
BTH	BATH	HMR	HIGH MOISTURE RESISTANT	SCR	SUNSCREEN
BWK	BRICKWORK	HR	HANDRAIL	SCT	SUSPENDED CEILING TILE
BWU	BOILING WATER UNIT	HTR	HEATER	SD	SEWER DRAIN
CB	CONCRETE BLOCK	HW	HOT WATER	SFL	STRUCTURE FINISHED LEVEL
CCTV	CLOSED CIRCUIT TELEVISION	HWD	HARDWOOD	SHB	SHOWER BATH
CD	CLOTHES DRYER	HWU	HOT WATER UNIT	SHR	SHOWER
CFC	COMPRESSED FIBROUS CEMENT	ID	INSIDE DIAMETER	SHS	SQUARE HOLLOW SECTION
CHS	CIRCULAR HOLLOW SECTION	IL	INVERT LEVEL	SK	SKIRTING
CI	CAST IRON	INCL	INCLUDE	SKL	SKYLIGHT
CIP	CAST IRON PIPE	INT	INTERNAL	SNK	SINK
CJ	CONTROL JOINT	10	INSPECTION OPENING	SP	SEWER PIT
CL	CENTRE LINE	J	JOINERY	SPEC	SPECIFICATION
CLNR	CLEANER	JT	JOINT	SPL	SPLASHBACK
COL	COLUMN	KB	KERB	SR	SHOWER ROSE
CONC	CONCRETE	KG	KERB AND GUTTER	SS	STAINLESS STEEL
CP	CHROME-PLATED	KIT	KITCHEN	ST	STONE
CPD	CUPBOARD	L	LOUVRE	SVP	SEWER VENT PIPE
CPT	CARPET	LDY	LAUNDRY	SW	STORM WATER
CR	CEMENT RENDER	LS	LOUVRE SCREEN	SWP	STORMWATER PIT
CSK	COUNTERSINK	M	MIRROR	T	TILE
CT	COOK TOP	MC	METAL CLADDING	TEL	TELEPHONE
CTR	CENTRE	MDF	MEDIUM DENSITY FIBREBOARD	TGSI	TACTILE INDICATORS
CW	COLD WATER	MH	MANHOLE	TIMB	TIMBER
D	DOOR	MISC	MISCELLANEOUS	TOH	TOP OF HOB
			MOVEMENT JOINT		
DB DF	DISTRIBUTION BOARD	MJ		TOK TOW	TOP OF KERB TOP OF WALL
	DRINKING FOUNTAIN	MLM	MELAMINE MICROMANE OVEN		
DG	DRIP GROOVE	MO	MICROWAVE OVEN	TP	TAP TOILET PAPER HOLDER
DIA	DIAMETER	MR	MOISTURE RESISTANT	TPH	
DIM	DIMENSION	MRS	METAL ROOF SHEETING	TR	TOWEL RAIL
DP	DOWNPIPE	MS	MILD STEEL	TRZO	TERRAZZO
DPC	DAMP-PROOF COURSE	MSB	MAIN SWITCHBOARD	TUB	LAUNDRY TUB
DPM	DAMP-PROOF MEMBRANE	MV	MECHANICAL VENT	TV	TELEVISION
DRG	DRAWING	MW	METALWORK	TYP	TYPICAL
DS	DUCTED SKIRTING	NGL	NATURAL GROUND LEVEL	U/G	UNDERGROUND
DW	DISHWASHER	NIC	NOT IN CONTRACT	U/S	UNDERSIDE
EA	EACH	NO	NUMBER	UB	UNIVERSAL BEAM
EDB	ELECTRICAL DISTRIBUTION BOARD	NOM	NOMINAL	UC	UNIVERSAL COLUMN
EJ	EXPANSION JOINT	NTS	NOT TO SCALE	UR	URINAL
EQ	EQUAL	OD	OUTSIDE DIAMETER	V	VINYL
ESB	ELECTRICAL SWITCHBOARD	OF	OVERFLOW-RAINWATER	VB	VANITY BASIN
EX	EXISTING (PRIOR TO)	OFC	OFF-FORM CONCRETE	VOS	VERIFY ON SITE
EXT	EXTERNAL	OHD	OVERHEAD DOOR	VP	VENT PIPE
F	FIXED GLAZING	OP	OPAQUE	W	WINDOW
FB	FACE BRICK	OV	OVEN	WB	WEATHERBOARD
FBL	FACE BLOCK	Р	PAINT (FINISH)	WC	WATER CLOSET
FC	FIBROUS CEMENT	PAV	PAVING	WIR	WALK-IN-ROBE
FCL	FINISHED CEILING LEVEL	PB	PLASTERBOARD	WM	WASHING MACHINE
FCU	FAN COIL UNIT	PC	PRECAST CONCRETE	WO	WALL OVEN
FEN	FENCE	PEB	PEBBLE BALLAST	WP	WASTE PIPE
FFL	FINISHED FLOOR LEVEL	PFC	PARALLEL FLANGE CHANNEL	WPM	WATERPROOF MEMBRANE

FOR REVIEW OF ENVIRONMENTAL FACTORS OXFORD FALLS GRAMMAR SCHOOL - CARPARK

1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100

Project

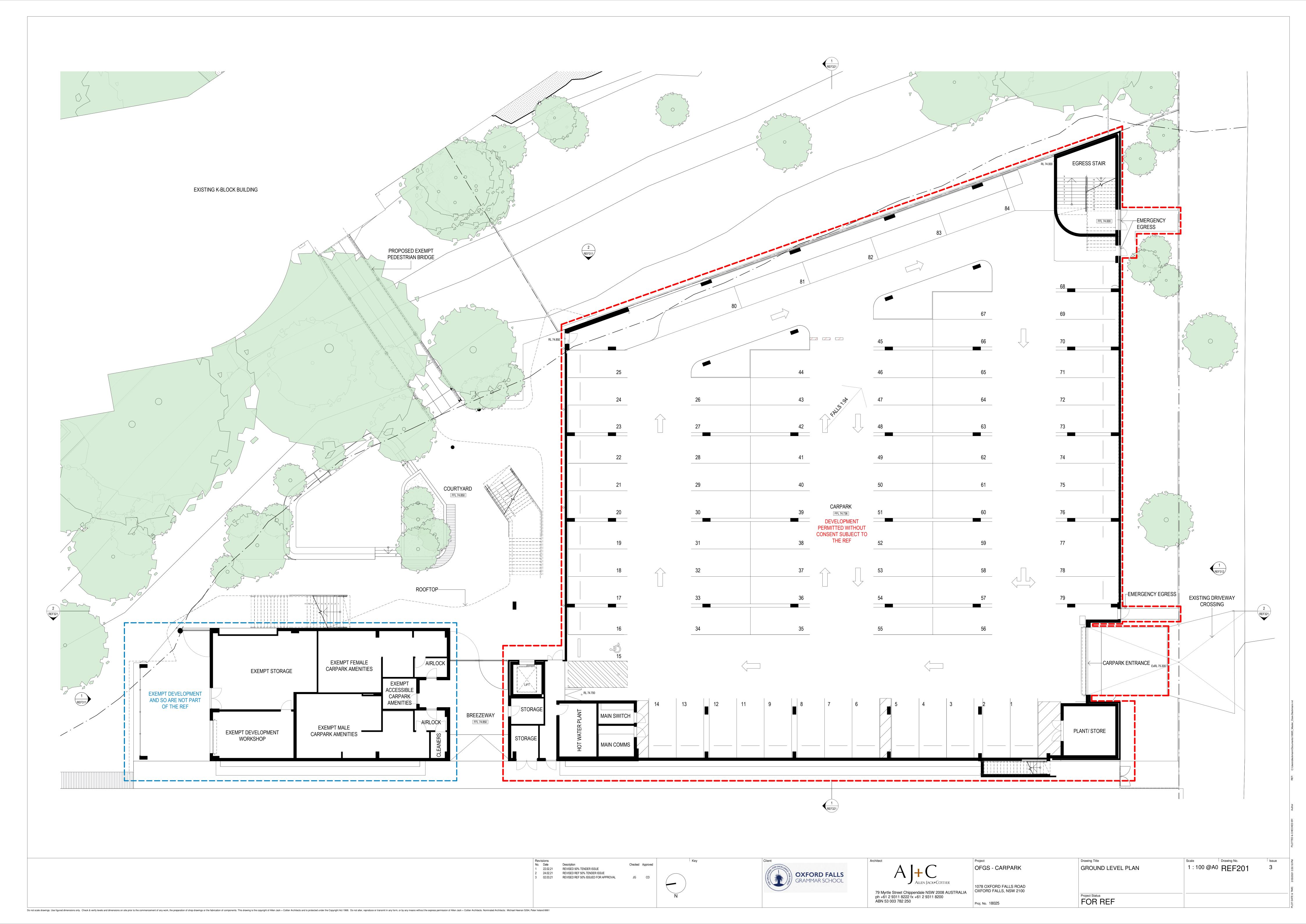
OFGS - CARPARK

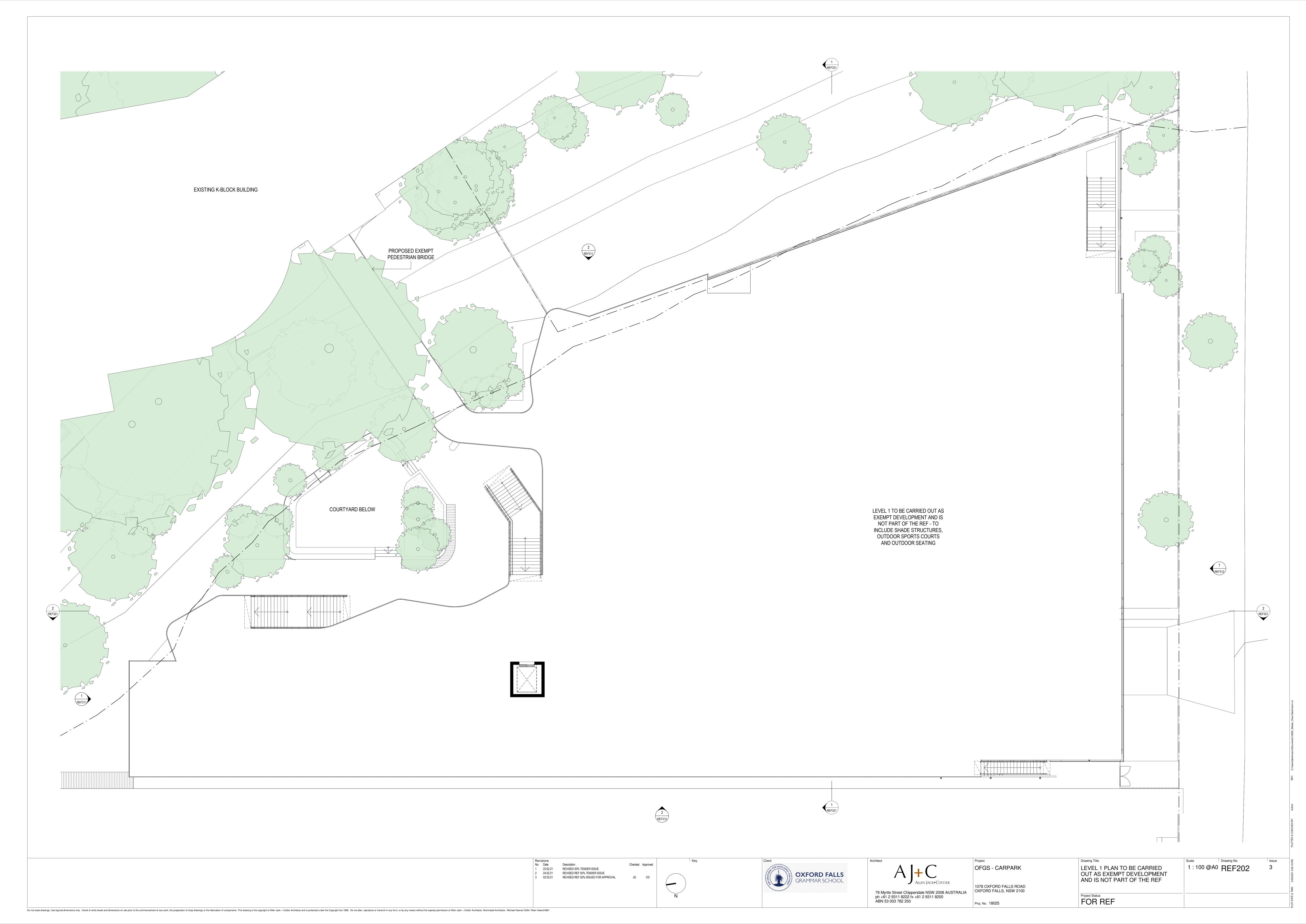
1078 OXFORD FALLS ROAD
OXFORD FALLS, NSW 2100

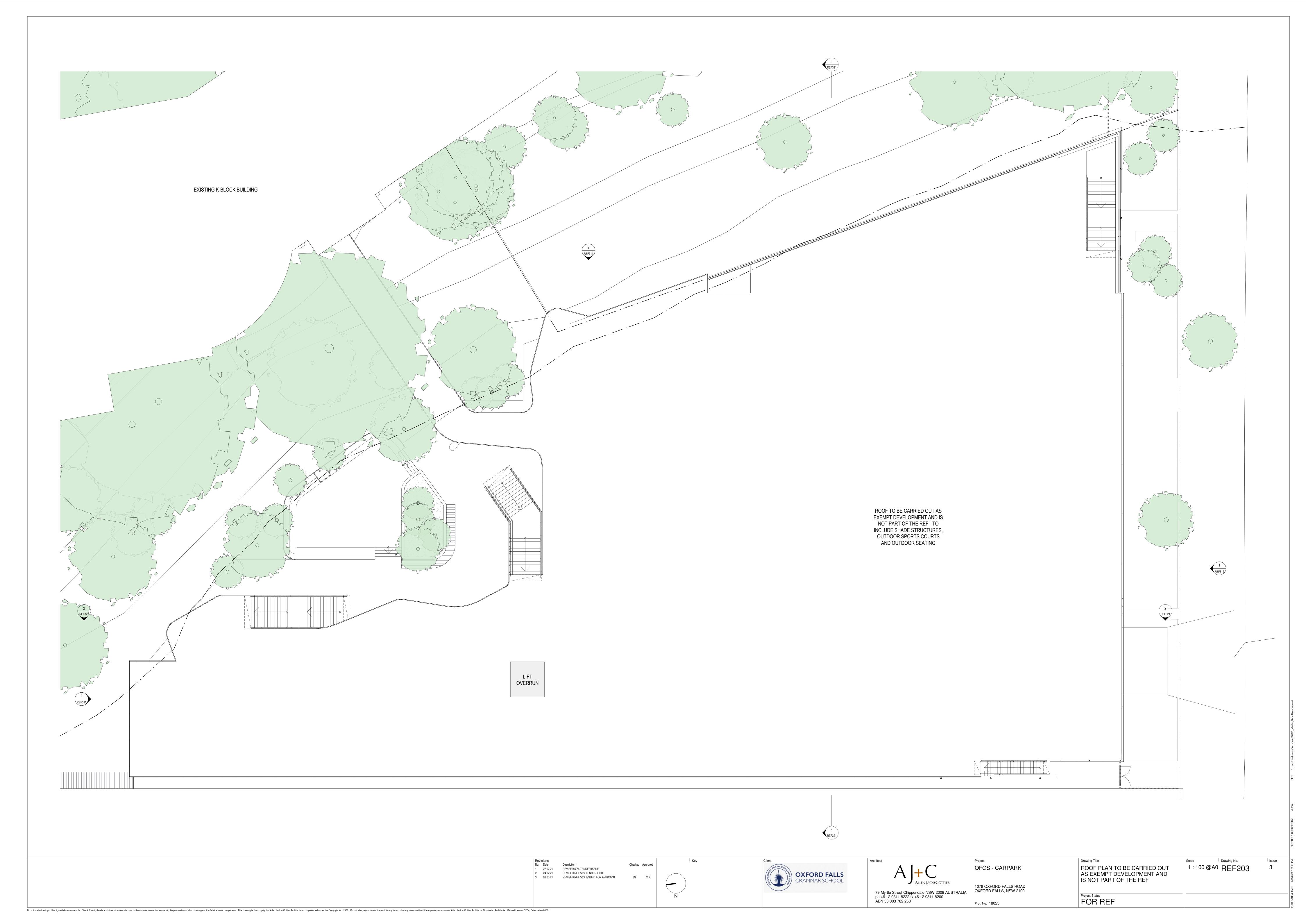
Proj. No. 18025

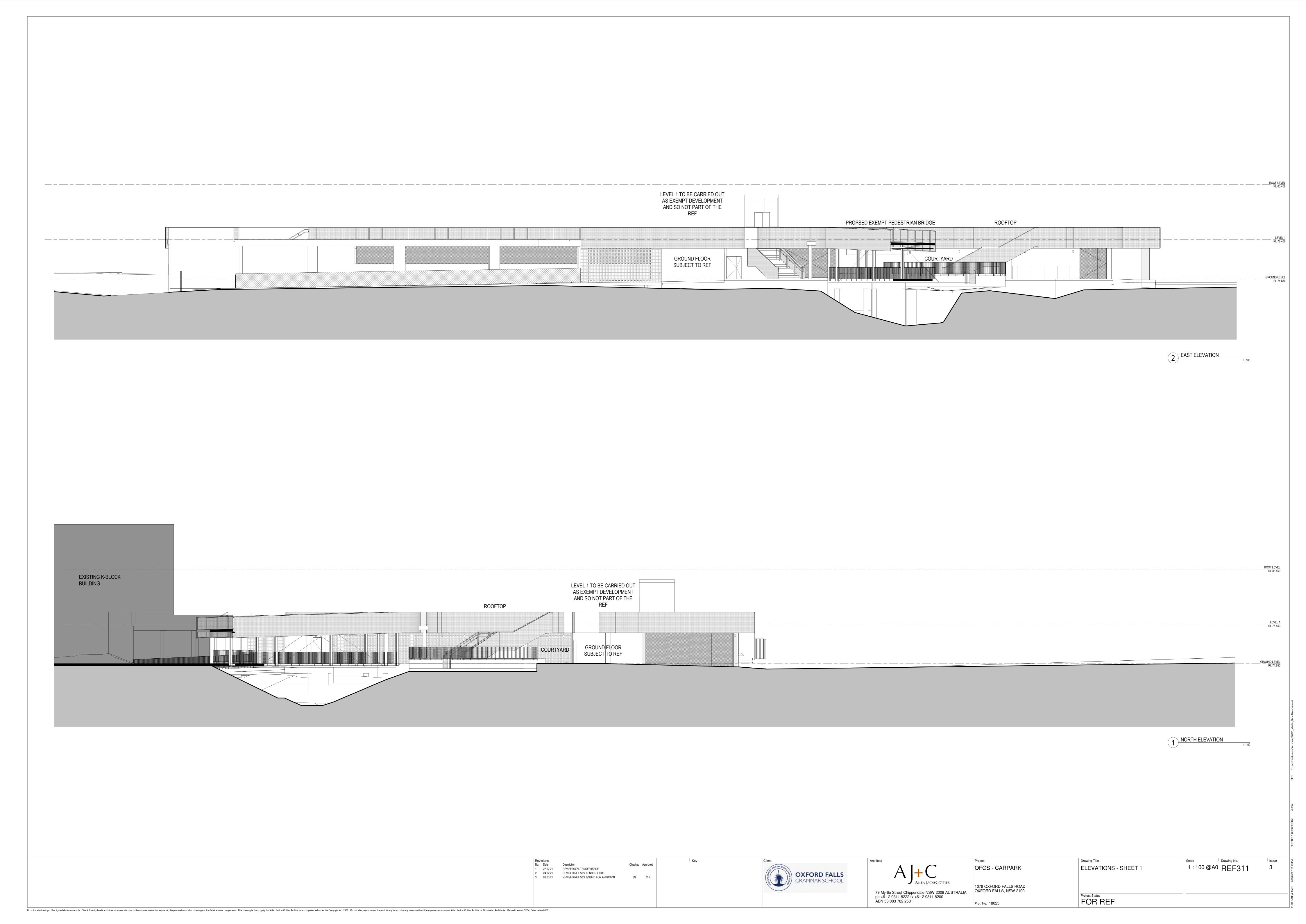
Drawing Title
COVER SHEET


Scale

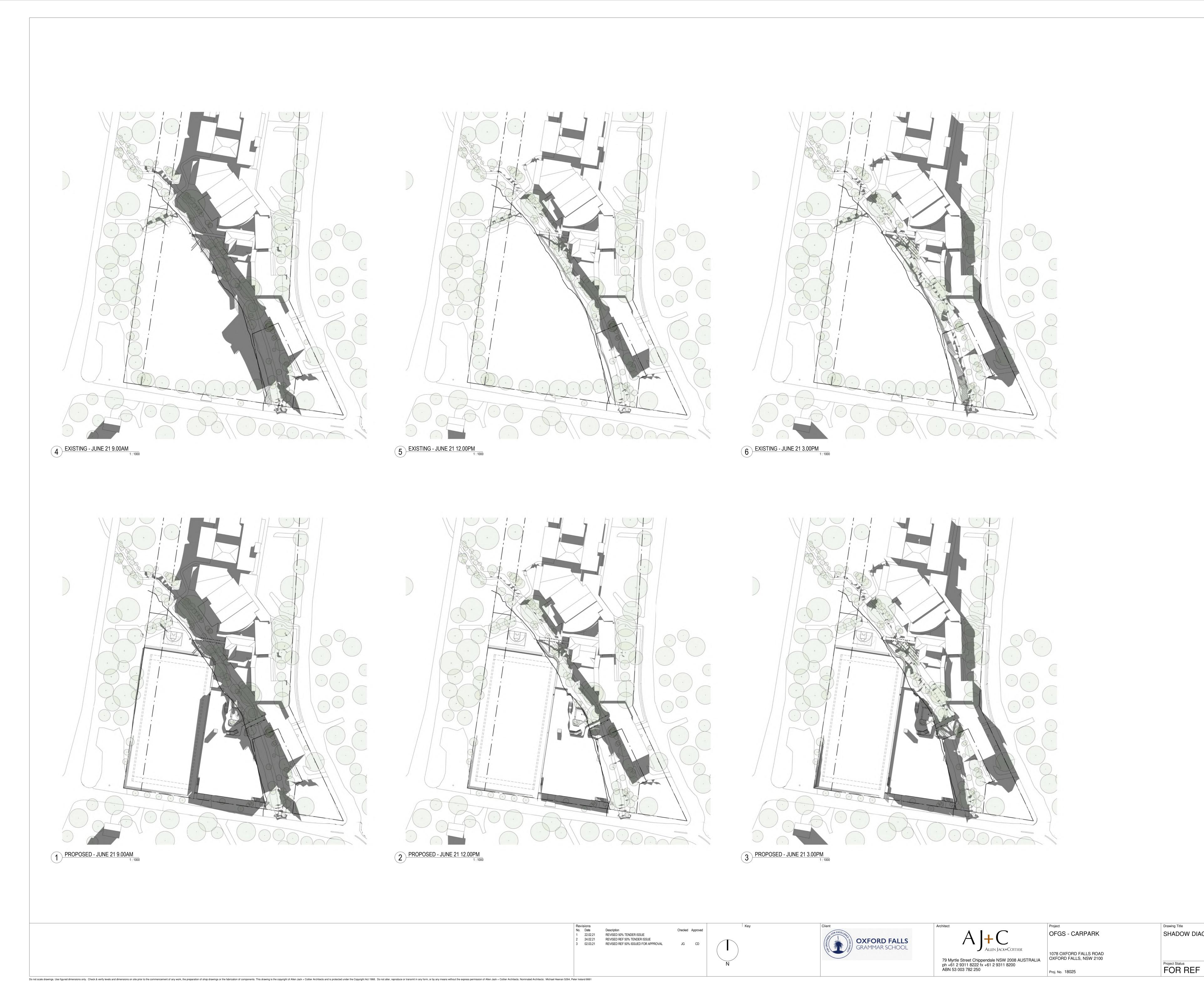

Drawing No.

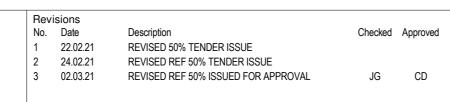

REF001

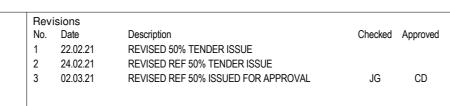

3


Project Status
FOR REF



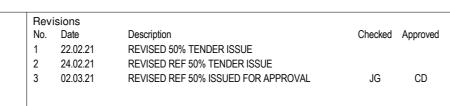





Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264, Peter Ireland 6661

Drawing Title	Scale	Drawing No.
PERSPECTIVE VIEW 1 FROM DREADNOUGHT ROAD		REF601
Project Status FOR REF		

Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264, Peter Ireland 6661



Drawing Title
PERSPECTIVE VIEW 2 FROM K BLOCK

Project Status
FOR REF

Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264, Peter Ireland 6661

Attachment D: EIS Waste Classification Assessment and Soil Suitability Analysis (2017)

15/11/2017

Report Ref: E30807KMlet-WC_rev1

Oxford Falls Grammar School 1078 Oxford Falls Road OXFORD FALLS NSW 2100

Attention: Mr Greg Morris

WASTE CLASSIFICATION ASSESSMENT AND SOIL SUITABILITY ANALYSIS
PROPOSED PLAYING FIELD DEVELOPMENT
OXFORD FALLS GRAMMAR SCHOOL

1 INTRODUCTION

Oxford Falls Grammar School ('the client') commissioned Environmental Investigation Services (EIS)¹ to assign a waste classification and conduct a soil suitability analysis of in-situ soil located at the playing fields at Oxford Falls Grammar School, 1078 Oxford Falls Road, Oxford Falls ('the site'). The site location is shown on Figure 1 and sampling for the assessment was confined to the in-situ soil in the investigation area as shown on Figure 2 attached in the appendices.

The purpose of this assessment was to:

- i. provide a waste classification for the off-site disposal of the material in accordance with the NSW EPA Waste Classification Guidelines Part 1: Classifying Waste (2014²); and
- ii. assess the suitability of the soil for growing grass on the oval.

The assessment was undertaken generally in accordance with an EIS proposal (Ref: EP45494KM) of 8 August 2017 and written acceptance from Oxford Falls Grammar School of 14 August 2017.

A geotechnical investigation was undertaken in conjunction with the waste classification assessment by JK Geotechnics³ and the results are presented in a separate report (Ref. 30807SYrpt, dated 23 October 2017).

³ Geotechnical consulting division of J&K

Postal Address: PO Box 976, North Ryde BC NSW 1670 Tel: 02 9888 5000 • Fax: 9888 5004

¹ Environmental consulting division of Jeffery & Katauskas Pty Ltd (J&K)

² NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

1.1 Proposed Development Details

The proposed development includes:

- Construction of a sporting facility building located in the south-eastern corner of the oval adjacent to the creek. The building will have a basement car park, which may require excavation to maximum depths of approximately 3m. A new vehicular access way to the building is proposed adjacent to Dreadnought Road;
- Expansion and reorientation of the existing sports field. The new sports field will occupy the
 existing field and will extend further west to accommodate the sports facility building in the
 south-east. The new oval will be at approximately the same surface level as the existing oval.
 Within the footprint of the existing oval this will require some cutting into the embankment
 along the southern and western boundaries of the site. It is expected that maximum cut
 depths may be in the order of approximately 3m; and
- Footbridges are proposed over the existing creek providing pedestrian access from the main school buildings to the proposed new sports facilities and oval.

2 SITE INFORMATION

2.1 Site Identification and Description

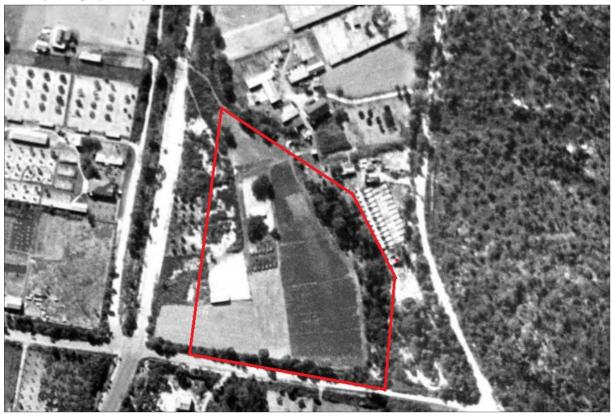
Table 2-1: Site Identification

Site Address:	1078 Oxford Falls Road, Oxford Falls, NSW, 2100
Lot & Deposited Plan:	Part of Lot 1 DP1046451
Current Land Use:	Sports oval
Area Applicable to Waste Classification:	Approximately 10,000m ²
Geographical Location (approx.):	Latitude: -33.739114°; Longitude: 151.24546°

A site inspection was conducted during the fieldwork on 25 and 26 September 2017. The school was located within undulating topography. A creek ran through the school grounds in a north-westerly to south-easterly direction.

The site was bound by Dreadnought Road to the south and the creek to the north-east. The site comprised a sports oval which was located in the south-western corner of the school grounds. The oval was relatively flat and appeared to have been formed by a cut along the western edge and filling along the eastern side, closer to the creek. Batters were located along the western and north-western sides of the oval.

A gravel surfaced car park was located at the top of the batter on the western side of the oval. School buildings were located on the eastern side of the creek. A seating area and several small to medium sized trees were located to the north of the oval.


Wakehurst Parkway was located beyond the gravel car park on the western side of the oval. Oxford Falls Road was located on the eastern side of the school buildings to the east of the site.

2.2 Background/Historical Information

EIS has undertaken a preliminary historical assessment based on a review of the following information:

- The 1943 aerial photograph for the site provided by SIX Maps⁴;
- The contaminated land records provided by the NSW EPA⁵; and
- Historical information from the school's website.

The 1943 aerial photograph indicated that the site was used for agricultural purposes at that time. The site area appeared to be divided into several fields or paddocks used for a variety of purposes. A copy of the photograph is reproduced below in Plate 1.

Plate 1: 1943 aerial photograph, showing the approximate location of the current school oval and assessment area outlined in red (Six Viewer - https://maps.six.nsw.gov.au, accessed on 19 October 2017)

There were no records for the site on the NSW EPA contaminated land registers.

Information from the school's website⁶ indicated that the school was constructed in the early 1980s and officially opened in 1984.

⁴ https://maps.six.nsw.gov.au/

⁵ http://www.epa.nsw.gov.au/

⁶ http://www.ofgs.nsw.edu.au/about

Considering the above information, the waste classification assessment will consider a broad suite of potential contaminants as outlined in Section 4.4.

2.3 Regional Geology

The geological map of Sydney (1983⁷) indicates the site to be underlain by Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses.

3 ASSESSMENT CRITERIA

3.1 NSW EPA Waste Classification Guidelines

Off-site disposal of fill, contaminated material, stockpiled soil, natural soil and rock excavated as part of the proposed development works is regulated by the Protection of the Environment Operations Act (1997⁸) and associated regulations and guidelines including Part 1 of the Waste Classification Guidelines.

Soils are classed into the following categories based on the chemical contaminant criteria outlined in the guidelines:

Table 3-1: Waste Categories

Category	Description
General Solid Waste (non-	If Specific Contaminant Concentration (SCC) ≤ Contaminant
putrescible) (GSW)	Threshold (CT1) then Toxicity Characteristics Leaching Procedure
	(TCLP) not needed to classify the soil as GSW
	• If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as GSW
Restricted Solid Waste (non-	If SCC ≤ CT2 then TCLP not needed to classify the soil as RSW
putrescible) (RSW)	• If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as RSW
Hazardous Waste (HW)	If SCC > CT2 then TCLP not needed to classify the soil as HW
	• If TCLP > TCLP2 and/or SCC > SCC2 then treat as HW

⁷ 1:100,000 Geological Map of Sydney (Series 9130), Department of Mineral Resources (1983) [now Department of Primary Industries]

⁸ NSW Government, (1997). *Protection of Environment Operations Act.* (POEO Act 1997)

Category	Description
Virgin Excavated Natural	Natural material (such as clay, gravel, sand, soil or rock fines) that meet
Material (VENM)	the following criteria:
	That has been excavated or quarried from areas that are not
	contaminated with manufactured chemicals, or with process
	residues, as a result of industrial, commercial mining or agricultural
	activities;
	That does not contain sulfidic ores or other waste; and
	Includes excavated natural material that meets such criteria for
	virgin excavated natural material as may be approved from time to
	time by a notice published in the NSW Government Gazette.

4 INVESTIGATION PROCEDURE

4.1 Subsurface Investigation and Soil Sampling

Field work for this investigation was undertaken on 25 and 26 September 2017. Soil samples for the waste classification assessment were obtained from eleven of the twenty-one boreholes drilled for the JK geotechnical investigation. The borehole locations are shown on Figure 2 attached in the appendices.

The sample locations were drilled using a truck-mounted hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler.

Soil samples were collected from the fill and natural profiles encountered during the investigation. All samples were recorded on the borehole logs attached in the appendices.

Samples were placed in glass jars with plastic caps and Teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. Sampling personnel used disposable nitrile gloves during sampling activities. The samples were labelled with the job number, sampling location, sampling depth and date.

4.2 <u>Screening for Volatile Organic Compounds (VOCs)</u>

A photoionisation detector (PID) was used to screen the samples for the presence of VOCs. PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases.

The sensitivity of the PID is dependent on the organic compound and varies for different mixtures of hydrocarbons. Some compounds give relatively high readings and some can be undetectable even though present in identical concentrations. The PID is best used semi-quantitatively to compare samples contaminated by the same hydrocarbon source. The PID is calibrated before use by

measurement of an isobutylene standard gas. All the PID measurements are quoted as parts per million (ppm) isobutylene equivalents.

4.3 Sample Preservation

Soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with AS4482.1-2005 and AS4482.2-1999⁹, as summarised in the following table:

Table 4-1: Soil Sample Preservation and Storage

Analyte	Preservation	Storage
Heavy metals	Unpreserved glass jar with Teflon lined lid	Store at <4°, analysis within 28 days (mercury and Cr[VI]) and 180 days (other metals)
Hydrocarbons, pesticides and other organics	As above	Store at <4°, analysis within 14 days
Asbestos	Sealed plastic bag	None

On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA-registered laboratory for analysis under standard Chain of Custody (COC) procedures.

4.4 <u>Laboratory Analysis for Waste Classification Assessment</u>

Selected samples were analysed for a range of potential contaminants based on the site information presented in Section 2. EIS note that a detailed site history assessment was not undertaken, however this was compensated for by analysing the samples for a broad range of potential contaminants.

Fifteen selected in-situ soil samples were analysed for the following:

- heavy metals including: arsenic, cadmium, chromium (total), copper, lead, mercury, nickel and zinc;
- polycyclic aromatic hydrocarbons (PAHs);
- total recoverable hydrocarbons (TRH); and
- monocyclic aromatic hydrocarbons including benzene, toluene, ethylbenzene and xylene (BTEX).

Ten of the samples were also analysed for asbestos.

Five of the samples were also analysed for:

- organochlorine pesticides (OCPs);
- organophosphate pesticides (OPPs); and

⁹ Guide to the Sampling and Investigation of Potentially Contaminated Soil Part2: Volatile Substances, Standards Australia, 1999 (AS 1999)

polychlorinated biphenyls (PCBs);

Samples were analysed by Envirolab Services (NATA Accreditation Number -2901) using the analytical methods detailed in the National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013^{10}). Reference should be made to the laboratory report (Ref: 176661) attached in the appendices for further information.

4.5 <u>Laboratory Analysis for Soil Suitability Analysis</u>

Three soil samples, collected at a variety of depths from BH1, BH4 and BH7 were analysed for a range of parameters to assess the soil's suitability for growing turf on a school oval. The analysis included:

- pH;
- electrical conductivity;
- organic matter;
- cation exchange capacity;
- nitrate;
- phosphate;
- potassium;
- sulphate;
- calcium;
- magnesium;
- iron;
- manganese;
- zinc;
- copper and
- boron.

5 RESULTS OF THE INVESTIGATION

5.1 Subsurface Conditions

A summary of the subsurface soil conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Table 5-1: Summary of Subsurface Conditions

Profile	Description (depth in m below ground level)
Fill	Fill material was encountered in all boreholes and extended to depths ranging from 0.1m
	to 3.5m. The fill typically comprised silty sand, sand and sandy clay, with sandstone gravel,
	cobbles and boulders. Traces of bricks, timber, plastic and string were encountered in some
	boreholes.

¹⁰ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013)*. (referred to as NEPM 2013)

Profile	Description (depth in m below ground level)
	Odours or staining were not observed in the fill during the investigation. Potential asbestos containing material was not observed.
	The attached Figure 2 shows the depth of fill material in each borehole, and a contour plan showing the approximate depth of fill across the site. The contours should be regarded as approximate only.
Natural Soil	Natural alluvial soils were encountered below the fill material, and comprised sands, clayey sands and sandy clays.
	Odours or staining were not observed in the natural soils during the investigation.
Bedrock	Weathered sandstone bedrock was encountered in several boreholes at depths ranging from 3.3m to 4.8m.
	Odours or staining were not observed in the bedrock during the investigation.
Groundwater	Groundwater seepage was encountered during drilling at depths ranging from 3.0m to 5.0m. On completion of drilling groundwater was measured at depths ranging from 2.8m to 4.5m. At the time of drilling the groundwater levels had not had time to stabilise and therefore may be artificially higher. No longer-term groundwater monitoring was carried out.

5.2 VOC Screening

PID soil sample headspace readings are presented in the COC documents attached in the appendices. All results were 0ppm equivalent isobutylene which indicates a lack of PID-detectable VOCs.

5.3 <u>Laboratory Results – Waste Classification Assessment</u>

The laboratory results were assessed against the criteria presented in Part 1 of the Waste Classification Guidelines. The results are summarised in Table A which is attached in the appendices. A summary of the results is presented below.

Table 5-2: Summary of Soil Laboratory Results Compared to Waste Classification Criteria

Analyte	No. of Samples	No. of Results	No. of Results > Comment					
	Analysed	> CT1 Criteria	SCC1 Criteria					
Heavy Metals	15	0	0	All results were below the CT1 and SCC1 criteria.				
TRH	15	0	0	All results were below the laboratory practical quantitation limits (PQLs).				

Analyte	No. of Samples	No. of Results	No. of Results >	Comments
	Analysed	> CT1 Criteria	SCC1 Criteria	
BTEX	15	0	0	All results were below the laboratory PQLs.
Total PAHs	15	0	0	All results were below the CT1 and SCC1 criteria.
Benzo(a)pyrene	15	0	0	All results were below the CT1 and SCC1 criteria.
OCPs & OPPs	5	0	0	All results were below the laboratory PQLs.
PCBs	5	0	0	All results were below the laboratory PQLs.
Asbestos	10	-	-	Asbestos was not detected in the samples analysed.

5.4 Statistical Analysis

95% Upper Confidence Limits (UCLs) of the mean were calculated for all analytes that were detected at concentrations above the laboratory PQLs, which included arsenic, chromium, copper, lead, nickel, zinc, total PAHs and benzo(a)pyrene. All 95% UCLs were below the corresponding CT1 criterion. The UCL calculations are included in Appendix F.

5.5 <u>Laboratory Analysis – Soil Suitability Assessment</u>

The analytical results of the soil suitability assessment are contained in the attached appendices. A summary of the results is presented below:

- The sample from BH1, collected from a depth of 0.0m to 0.2m, had a low effective cation exchange capacity (eCEC) indicating poor nutrient retention. It was recommended that nitrate, potassium and sulphate be boosted. Once compacted through pedestrian traffic, it was expected that the soil would become waterlogged and turf growth would fail;
- The sample from BH4, collected from a depth of 0.5m to 0.95m, had a low eCEC indicating poor nutrient retention. It was recommended that all nutrients be boosted with the exception of phosphorus. Once compacted through pedestrian traffic, it was expected that the soil would become waterlogged and turf growth would fail;
- The sample from BH7, collected from a depth of 0.0m to 0.2m, had a low eCEC indicating poor nutrient retention. It was recommended that all nutrients be boosted with the exception of phosphorus. The soil in this sample was considered to be the most suitable for growing turf.

6 CONCLUSIONS

6.1 Waste Classification of Fill

Based on the results of the assessment, and at the time of reporting, the fill material is classified as **General Solid Waste (non-putrescible)**. Surplus fill should be disposed of to a landfill that is licensed by the NSW EPA to receive this waste stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation.

6.2 Classification of Natural Soil and Bedrock

Based on the scope of work undertaken for this assessment, and at the time of reporting, EIS are of the opinion that the natural soil and bedrock at the site meets the definition of **VENM** for off-site disposal or re-use purposes. VENM is considered suitable for re-use on-site, or alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material. In accordance with Part 1 of the Waste Classification Guidelines, the VENM is pre-classified as general solid waste and can also be disposed of accordingly to a facility that is licensed to accept it.

6.3 Recommendations of the Waste Classification Assessment

Any unexpected finds encountered during the site works should be inspected by a suitably qualified environmental consultant¹¹. In the event that the find has the potential to alter the waste classification documented in this report, additional testing and reporting should be undertaken.

6.4 Conclusions of the Soil Suitability Assessment

Detailed recommendations for each of the three sample locations are contained in the report attached in Appendix E. A summary of the recommendations is provided below.

It is recommended that fertiliser be added to the soil to boost nutrients. The nutrient requirements are likely to vary depending on the location of the soil.

It is recommended that the soil in the vicinity of sample locations BH1 and BH4 be capped with approximately 100mm of imported 80/20 media (a blend of 80% sand and 20% soil). Alternatively the soil from the vicinity of sample BH7 could be used as a capping material.

6.5 **General Information**

If disposed off-site, the fill material must be disposed of to a facility licensed by the NSW EPA to accept the waste. It is the responsibility of the receiving facility to ensure that the material meets their EPA license conditions. EIS accepts no liability whatsoever for illegal or inappropriate disposal of material.

Report Ref: E30807KMlet-WC_rev1

¹¹ The consultant should be from a company that is a member of the Australian Contaminated Land Consultants Association (ACLCA).

Fill and contaminated soil disposal costs are significant and may affect project viability. These costs should be assessed at an early stage of the project development to avoid significant future unexpected additional costs.

Material classed as VENM must not be mixed with any fill material (including building rubble) as this will invalidate the VENM classification. Where doubt exists about the difference between fill and VENM material an environmental/geotechnical engineer should be contacted for advice.

Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner. EIS accepts no liability whatsoever for the unlawful disposal of any waste from any site.

7 LIMITATIONS

The report limitations are outlined below:

- EIS accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the EIS proposal; and terms of contract between EIS and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, EIS has not undertaken any verification process, except where specifically stated in the report;
- EIS has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- EIS accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;

- EIS have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or land use. EIS should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa;
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose;
- Copyright in this report is the property of EIS. EIS has used a degree of care, skill and diligence
 normally exercised by consulting professionals in similar circumstances and locality. No other
 warranty expressed or implied is made or intended. Subject to payment of all fees due for the
 investigation, the client alone shall have a licence to use this report;
- If the client, or any person, provides a copy of this report to any third party, such third party must not rely on this report except with the express written consent of EIS; and
- Any third party who seeks to rely on this report without the express written consent of EIS does
 so entirely at their own risk and to the fullest extent permitted by law, EIS accepts no liability
 whatsoever, in respect of any loss or damage suffered by any such third party.

If you have any questions concerning the contents of this letter please do not hesitate to contact us.

Kind Regards

Rob Muller

Senior Environmental Scientist

Adrian Kingswell

Principal

Appendices:

Appendix A: Report Figures

Appendix B: Laboratory Summary Table

Appendix C: Borehole Logs

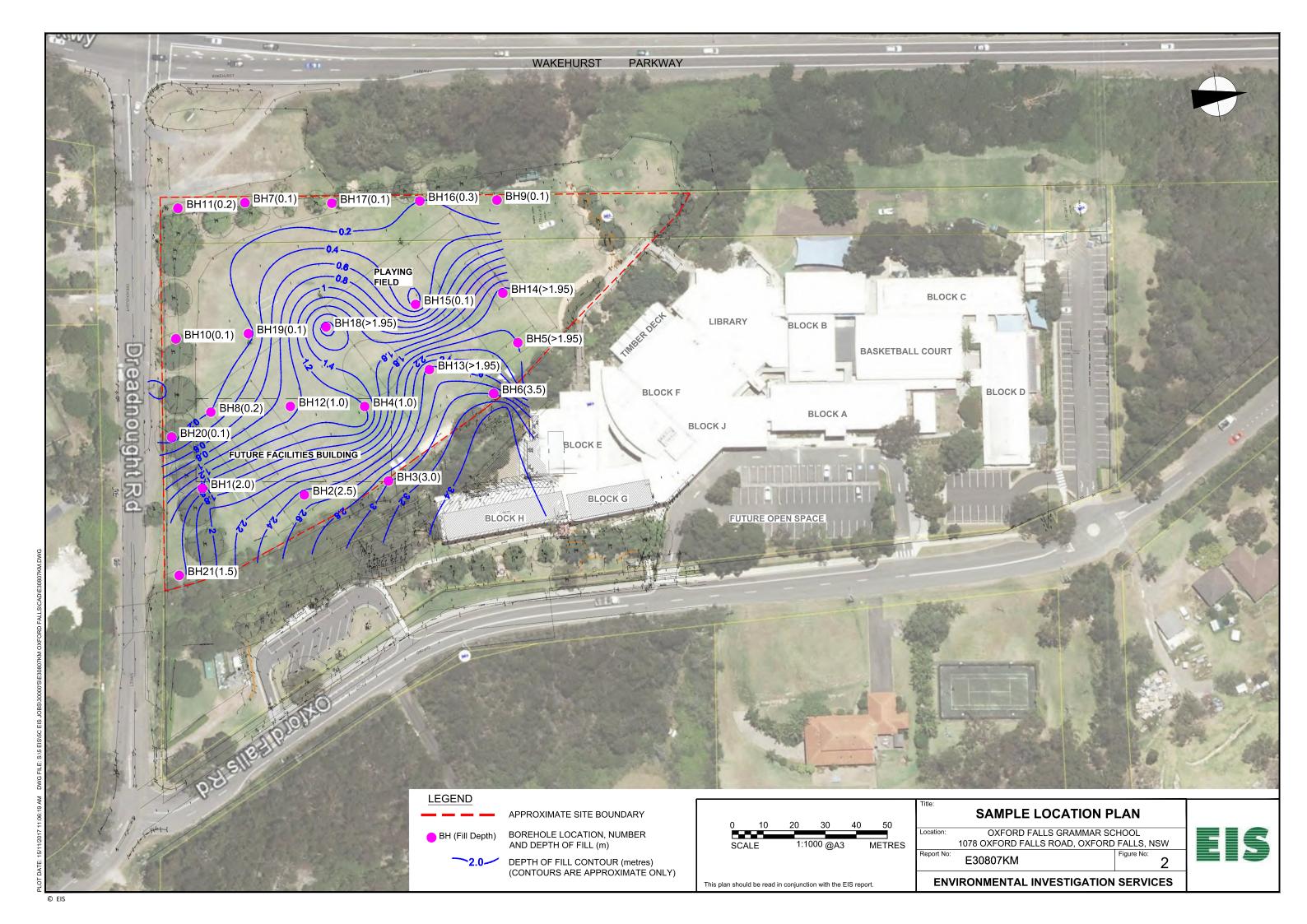
Appendix D: Laboratory Report & COC Documents

Appendix E: Soil Suitability Analysis Report and Recommendations

Appendix F: UCL Calculations

Appendix A: Report Figures

AERIAL IMAGE SOURCE: GOOGLE EARTH PRO 7.1.5.1557 AERIAL IMAGE ©: 2015 GOOGLE INC.


SITE LOCATION PLAN

OXFORD FALLS GRAMMAR SCHOOL Location:

1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW Report No:

E30807KM

ENVIRONMENTAL INVESTIGATION SERVICES

Appendix B: Laboratory Summary Table

TABLE A SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES All data in mg/kg unless stated otherwise

			HEAVY METALS				PAHs OC/OP PESTICIDES				Total			TRH			BTEX COMPOUNDS										
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P	Total Endosulfans	Chloropyrifos	Total Moderately	Total Scheduled ³	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl benzene	Total Xylenes	ASBESTOS FIBRES
PQL - Envirola	b Services		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	250	0.2	0.5	1	3	100
General Solid	Waste CT1 1		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	<50	<50	650		NSL		10,000	10	288	600	1,000	-
General Solid	Waste SCC1 1		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	<50	<50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Sol	id Waste CT2	1	400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	<50	<50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Sol	id Waste SCC	2 1	2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	<50	<50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
BH1	0.0-0.2	Fill: silty sand	6	LPQL	9	10	34	LPQL	3	79	0.3	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH1	2.0-2.5	Clayey sand	LPQL	LPQL	8	1	9	LPQL	2	13	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH2	0.0-0.2	Fill: silty sand	5	LPQL	7	18	23	LPQL	2	51	0.1	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH2	0.5-0.95	Fill: sand	5	LPQL	16	15	73	LPQL	2	63	1.4	0.1	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
3H3	0.0-0.2	Fill: silty sand	LPQL	LPQL	7	6	12	LPQL	2	31	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
вн6	0.0-0.2	Fill: silty sand	LPQL	LPQL	13	5	13	LPQL	1	39	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
вн6	3.0-3.45	Fill: sand	LPQL	LPQL	7	13	21	LPQL	2	100	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
вн9	0.0-0.2	Fill: silty sand	8	LPQL	13	29	56	LPQL	4	200	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH11	0.0-0.2	Fill: silty sand	LPQL	LPQL	9	12	25	LPQL	7	45	0.4	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH12	0.0-0.2	Fill: silty sand	5	LPQL	7	10	15	LPQL	2	42	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH13	0.5-0.95	Fill: sand	LPQL	LPQL	16	2	9	LPQL	2	21	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH16	0.0-0.2	Fill: silty sand	6	LPQL	12	31	36	LPQL	4	160	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH18	0.0-0.2	Fill: silty sand	LPQL	LPQL	6	13	13	LPQL	3	48	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH18	1.5-1.95	Fill: clayey sand	LPQL	LPQL	19	3	8	LPQL	2	220	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH19	0.0-0.2	Fill: silty sand	LPQL	LPQL	7	10	18	LPQL	3	49	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
Total Numb	er of samples		15	15	15	15	15	15	15	15	15	15	5	5	5	5	5	15	15	15	15	15	15	15	15	15	10
Maximum \	/alue		8	LPQL	19	31	73	LPQL	7	220	1.4	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NC
			1								1						_	1					1				
		s on Fill Samples			I	I	I	1	1	I		I		I					1	1		1			1		
	Fill Samples 4		14	14	14	14	14	14	14	14	14	14	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Mean Value			4.8	NC	10.6	12.6	25.4	NC	2.8	82	0.2	0.06	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Standard De	eviation [*]		1.1	NC	4.2	8.6	18.9	NC	1.5	64.5	0.4	0.01	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
% UCL⁴	4		95%	NC	95%	NC	95%	NC	95%	95%	95%	95%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
UCL Value			5.3	NC	12.6	NC	34.4	NC	3.5	129.7	0.4	0.06	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

Explanation:

- NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)
- ² Assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion
- 3 Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde
- ⁴ Statistical calculation undertaken using ProUCL version 5.0 (USEPA). Statistical calculation has only been undertaken on fill samples

Concentration above the CT1

Concentration above SCC1

Concentration above the SCC2

VALUE

VALUE

VALUE

Abbreviations:

PAHs: Polycyclic Aromatic Hydrocarbons UCL: Upper Level Confidence Limit on Mean Value

PARS: Polycyclic Aromatic Hydrocarbons

B(a)P: Benzo(a)pyrene

PQL: Practical Quantitation Limit

LPQL: Less than PQL

PID: Photoionisation Detector

PCBs: Polychlorinated Biphenyls

UCL: Upper Level Confidence Limit on No.

NA: Not Analysed

NC: Not Calculated

NSL: No Set Limit

SAC: Site Assessment Criteria

TRH: Total Recoverable Hydrocarbons

CT: Contaminant Threshold
SCC: Specific Contaminant Concentration
HILs: Health Investigation Levels
NEPM: National Environmental Protection Measure
BTEX: Monocyclic Aromatic Hydrocarbons

Appendix C: Borehole Logs

BOREHOLE LOG

Borehole No.

1/1

E 337534 N 6265349

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.2m

IK350

Date	e: 25-	9-17				JK350		D	atum:	AHD
					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 SAMPLES DB	DS Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		N > 10 -2,10/50mm REFUSAL	0 -			FILL: Silty sand, fine to medium grained, brown, with nedium to coarse grained sandstone gravel and cobbles, trace of roots, bricks, metal and plastic fragments.	M			GRASS COVER - MODERATE TO HIGH - 'TC' BIT RESISTANCE
					SC	FILL: Sand, fine to medium grained, orange brown and dark grey, with fine to coarse grained sandstone gravel. CLAYEY SAND: fine to medium	M	(L)		SOIL RESISTANCE APPEARS MODERATELY
			2 -		30	grained, grey and orange brown.	IVI	(L)		- \COMPACTED - ALLUVIAL - -
		N = 9 3,5,4	3 -			CLAYEY SAND: fine to coarse grained, grey and dark grey.		L		- - - -
AFTEF 1 HR		N > 30 9,20, 10/50mm	-		-	SANDSTONE: fine to coarse grained,	XW	EL		LOW RESISTANCE
		REFUSAL	5 -			grey.	DW	M		MODERATE TO HIGH RESISTANCE
			6			END OF BOREHOLE AT 6.0m				-

BOREHOLE LOG

Borehole No.

2

1/1

E 337534 N 6265380

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.2m

Date: 25-9-17 **Datum:** AHD

Date:	: 25-9	-17						ט	atum:	AHD
					Log	ged/Checked by: T.C./W.T.				
Groundwater Record	ES SAMPLES DE				Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0 -			FILL: Silty sand, fine to medium grained, dark brown.	М			GRASS COVER
		N = 25 8,10,15	- - 1 - -			FILL: Sand, fine to coarse grained, dark brown, grey and orange brown, with clay and fine to medium grained sandstone gravel.				APPEARS - WELL - COMPACTED
		N = 5 3,2,3	- - 2 -							APPEARS POORLY COMPACTED
AFTER 1 HR			-		CL	SANDY CLAY: medium plasticity, brown.	MC≈PL	(F)		- - ALLUVIAL
		N = 14 5,7,7	3 - - - -		SP	SAND: fine to coarse grained, grey and orange brown, with clay.	М	MD		- - -
		N > 25 8,15, 10/50mm	4 - - -		-	SANDSTONE: fine to coarse grained, grey and dark grey.	XW	EL		- - - -
		REFUSAL	5 — - -				DW	M		 MODERATE TO HIGH 'TC' BIT RESISTANCE
			-			SANDSTONE: fine to medium grained, grey.				HIGH RESISTANCE
			6 - - - - 7			END OF BOREHOLE AT 6.0m				-
			7_							

BOREHOLE LOG

Borehole No.

3

1/1

E 33753 N 6265408

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 73.7m

Date: 25-9-17 **Datum:** AHD

	. 200				Logg	ged/Checked by: T.C./W.T.		_		
Groundwater Record	ES U50 SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0			FILL: Silty sand, fine to coarse grained, brown, with root fibres.	М			GRASS COVER
		N = 4 2,2,2	- - - 1 –	1-		FILL: Sandy clay, medium plasticity, red brown, fine to medium grained sand, trace of fine to coarse grained sandstone gravel, cobbles and boulders.	MC≈PL			APPEARS POORLY COMPACTED
		N = 23 3,8,15	- - -			FILL: Silty sand, fine to medium grained, orange brown, grey and brown, with fine to coarse grained sandstone gravel, cobbles and				- APPEARS WELL COMPACTED
AFTER 1 HR		N > 16 1,5,11/	2		SC	\boulders, trace of brick. CLAYEY SAND: fine to coarse grained, grey.	М	MD		- ALLUVIAL ORGANIC ODOUR
		20mm REFUSAL	- - 4 – -		-	SANDSTONE: fine to medium grained, orange brown and grey.	DW	VL-L		LOW 'TC' BIT RESISTANCE
			- - 5 –			SANDSTONE: fine to coarse grained, grey.		L-M		MODERATE - RESISTANCE -
			- - -					M		MODERATE TO HIGH - RESISTANCE -
			- - - - - 7			END OF BOREHOLE AT 6.0m				-

BOREHOLE LOG

Borehole No.

4

1/1

E 337513 N 6265402

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.0m

Date: 25-9-17 **JK**350 **Datum:** AHD

Date : 25-9-17	JK350 Datum: AHD						
	Logged/Checked by: T.C./W.T.						
Groundwater Record ES US0 DB DS DS Field Tests	Depth (m) Graphic Log Unified Classification NOILLAINDSSAG	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)					
N = 10 6,6,4	FILL: Silty sand, fine to medium grained, brown and orange brown, trace of medium to coarse grained sandstone gravel, cobbles and boulders. FILL: Sandy clay, medium plasticity, light brown mottled red and yellow	M GRASS COVER APPEARS WELL COMPACTED					
N = 8 3,4,4 N = 14 3,5,9	brown, with medium to coarse graine sandstone gravel. CLAYEY SAND: fine to medium grained, grey mottled dark grey and orange brown.	M L - ALLUVIAL					
AFTER 1 HR N > 17 6,7,10/ 20mm REFUSAL		- - - - - -					
	- SANDSTONE: fine to coarse grained grey and orange brown. 6 END OF BOREHOLE AT 6.0m	, DW L-M - LOW TO MODERATE 'TC' BIT - RESISTANCE -					
	7						

BOREHOLE LOG

Borehole No.

1/1

E 337510 N 6265456

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 73.6m

Date:	Date : 25-9-17					JK350	Datum: AHD			
					Logg	ged/Checked by: T.C./W.T.				
	ES U50 DB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION		N > 10 \10/20mm REFUSAL N = 6 2,3,3	1-			FILL: Silty sand, fine to medium grained, brown, with root fibres, trace of medium to coarse grained sandstone gravel. FILL: Silty sand, fine to medium grained, orange brown, with fine to coarse grained sandstone gravel, cobbles and boulders.	D M			GRASS COVER APPEARS POORLY TO MODERATELY COMPACTED
			2 -			END OF BOREHOLE AT 1.95m				

BOREHOLE LOG

Borehole No.

6

1/1

E 337518 N 6265448

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 73.6m

Date: 25-9-17 **Datum:** AHD

Date	25-9	-17						U	atum:	АПО
					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0 - -			FILL: Silty sand, fine to coarse grained, brown, trace of fine to medium grained sandstone gravel.	М			GRASS COVER - -
			-			FILL: Sandstone boulder	-			- HIGH 'TC' BIT RESISTANCE
			1 - - -			FILL: Silty sand, fine to coarse grained, brown, orange brown and grey, with fine to medium grained sandstone gravel, trace of timber and	M			SOIL RESISTANCE APPEARS MODERATELY
		N = 15 4,11,4	2 —			plastic fragments.				- COMPACTED - -
ON			3 -			FILL: Sand, fine to coarse grained, dark grey and orange brown, with string fibrefragments.				- - - APPEARS
COMPLETION		N = 6 3,3,3	-							POORLY COMPACTED
			- 4 - -		SC	CLAYEY SAND: fine to coarse grained, grey.	M-W	(MD)		- ALLUVIAL - - -
		N = SPT 20/70mm	=		-	SANDSTONE: fine to coarse grained, grey.	DW	VL-L		LOW 'TC' BIT RESISTANCE
		REFUSAL	5 — - -					M-H		HIGH RESISTANCE
			6 — -	-		END OF BOREHOLE AT 5.6m				'TC' BIT REFUSAL - - -
			- - - 7 _							-

BOREHOLE LOG

Borehole No.

7

1/1

E 337443 N 6265377

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 76.1m

Date:	25-9)-17				JK350	Datum: AHD				
					Logg	ged/Checked by: T.C./W.T.					
	U50 DB DS SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET			0 -	XXXX	SP	FILL: Silty sand, fine to medium grained, brown, with root fibres.	M M	MD		GRASS COVER	
ION		N = 12 4,6,6	- - - 1 -			SAND: fine to coarse grained, orange brown, with clay.				_ ALLUVIAL - - -	
		N = 14 3,6,8	- - 2 - -							- - -	
		N = 17	3 -		SC	CLAYEY SAND: fine to coarse grained, grey, orange brown and red brown.				-	
		7,7,10	- - - 4 –							-	
		N = 23 10,10,15	-		-	SANDSTONE: fine to coarse grained, grey, orange brown and red brown.	XW	EL		-	
			5			END OF BOREHOLE AT 4.95m				-	

BOREHOLE LOG

Borehole No.

1/1

E 337503 N 6265355

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.3m

Date: 26-9-17 **Datum:** AHD

Date: 26-9-17 Datum: AHD										AHD
	,			, ,	Logg	ged/Checked by: T.C./W.T.		1		
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
AFTER 1 HR		N = 14 5,7,7 N = 14 5,6,8 N = 21 10,11,10	0		sc sc	FILL: Silty sand, fine to medium grained, brown, yellow brown mottled red and light brown, with medium to coarse grained sandstone gravel and cobbles. CLAYEY SAND: fine to coarse grained, grey. CLAYEY SAND: fine to coarse grained, grey and orange brown.	M	MD		GRASS COVER
					-	SANDSTONE: fine to coarse grained, grey. END OF BOREHOLE AT 6.0m	DW	L-M		LOW 'TC' BIT - RESISTANCE

BOREHOLE LOG

Borehole No.

9

1/1

E 337457 N 6265456

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 73.6m

Date: 26-9-17 JK350 **Datum:** AHD

Date : 26-9-17		JK350 Datum: AHD								
					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION			0 -			FILL: Silty sand, fine to medium grained, brown, with fine to coarse grained sandstone gravel.	M			GRASS COVER
		N = 7 4,4,3	- - 1 -		SC	CLAYEY SAND: fine to medium grained, orange brown.	М	L		- ALLUVIAL - -
		N = 7	- - -			CLAYEY SAND: fine to coarse grained, grey and orange brown, trace of ironstone gravel.				-
		3,4,3	2 -			END OF BOREHOLE AT 1.95m				-
			-							- - -
			3 -							- - -
			-							-
			-							-
			5 -							-
			-							-
			6							-
			- - 7_							

BOREHOLE LOG

Borehole No.

10

1/1

E 337478 N 6265347

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 75.8m

Job No. 3080	7SY		Meth	od: SPIRAL AUGER	R.L. Surface: 75.8m				
Date : 26-9-17	•			JK350	Datum : AHD				
			Logg	ged/Checked by: T.C./W.T.					
Groundwater Record ES USO DB DS SAMPLES	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET	0 -	XXXX	SP	FILL: Silty sand, fine to coarse grained, brown, with roots.	D M	L		GRASS COVER	
ION	_			SAND: fine to coarse grained, orange brown, with clay.	I W r			ALLUVIAL	
	N = 9			blown, with clay.				-	
3	3,4,5							_	
	'-			CLAYEY SAND: fine to coarse				-	
	-		00	grained, orange brown and grey.		IVID		_	
	I = 10 3,4,6							_	
	2 —							_	
	-							-	
			SP	SAND: fine to coarse grained, grey,				-	
	_			orange brown and red brown.				-	
	3 – I = 17							_	
	7,8,9							-	
	-							-	
	4 -	71							
	-		-	SANDSTONE: fine to coarse grained, orange brown.	XW-DW	EL-VL		VERY LOW TO LOW - 'TC' BIT RESISTANCE	
	-			END OF BOREHOLE AT 4.5m				-	
	5 —							_	
	-							-	
	-							-	
								-	
	6 —							_	
	-							-	
	-							-	
	7_								

BOREHOLE LOG

Borehole No.

11

1/1

E 337442 N 6265352

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 77.0m

Date: 26-9-17 **Datum:** AHD

					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0	\bowtie		FILL: Silty sand, fine to medium	D			GRASS COVER
		N = 10 4,4,6	- - - 1 -		SC	grained, brown, with roots. CLAYEY SAND: fine to coarse grained, orange brown.	М	MD		- ALLUVIAL - -
		N = 14 5,6,8	- - - -			CLAYEY SAND: fine to coarse grained, orange brown and red brown.				- - -
AFTER		N = 20	2 - - - - 3 -		SP	SAND: fine to coarse grained, red brown and grey.				- - -
1 HR _₩		5,6,14	4-			SAND: fine to coarse grained, red brown, with clay.		(MD)		- - - -
			5 - 5 -		-	SANDSTONE: fine to coarse grained, orange brown, grey and red brown.	XW	EL		VERY LOW TO LOW TC' BIT RESISTANCE LOW RESISTANCE
			-				DW	_		-
			-			END OF BOREHOLE AT 5.5m				-
			6 -							- - -
			7 _	_						-

BOREHOLE LOG

Borehole No.

12

1/1

E 337510 N 6265378

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.3m

Date: 26-9-17 **JK**350 **Datum:** AHD

Date	e: 26-9	-17 JK350 Datum: AHD							AHD	
		Logged/Checked by: T.C./W.T.								
Groundwater Record	ES U50 SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		N = 30 6,20,10	-			FILL: Silty sand, fine to medium grained, brown, with roots. FILL: Sand, fine to coarse grained, orange brown and grey, with clay, trace of fine grained sandstone gravel.	M			GRASS COVER APPEARS WELL COMPACTED
		N = 9 3,4,5	1 - - - 2 -		SP	SAND: fine to coarse grained, grey and dark grey, trace of clay.	M	L		ALLUVIAL
AFTER 1 HR		N = 7 2,3,4	3 - - -		CL	SANDY CLAY: medium plasticity, grey, fine to coarse grained sand.	MC≈PL	VSt	300 350	- - - -
		N = 25 6,7,18	4 - - - 5 - - -			SANDSTONE: fine to coarse grained, orange brown and grey.	xw	EL		VERY LOW - 'TC' BIT - RESISTANCE -
			- - - - 7			END OF BOREHOLE AT 6.0m				- - -

BOREHOLE LOG

Borehole No.

13

1/1

E 337501 N 6265426

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.0m

Logged/Checked by: T.C./W.T. Section Comparison Co				17 JK350					Datum: AHD			
Section Sect					Logg	ged/Checked by: T.C./W.T.						
DRY ON COMPLETE ION N > 13 6.13/10mm REFUSAL N = 13 7.6.7 FILL: Sand, fine to coarse grained, orange brown and dark grey, with clay. FILL: Sand, fine to coarse grained, orange brown and dark grey, with medium grained sandstone gravel. END OF BOREHOLE AT 1.95m	Groundwater Record	 Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
	DRY ON COMPLET	N > 13 8,13/10mm REFUSAL N = 13	0	9		grained, brown, with roots. FILL: Sand, fine to coarse grained, orange brown and dark grey, with clay. FILL: Sand, fine to coarse grained, red brown and dark grey, with medium grained sandstone gravel.	M	σ α	IGK	APPEARS MODERATELY		

BOREHOLE LOG

Borehole No.

14

1/1

E 337480 N 6265454

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 73.8m

Date: 26-9-17 **JK**350 **Datum:** AHD

Date:	Date: 26-9-17					JK350		Datum: AHD			
					Logg	ged/Checked by: T.C./W.T.					
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET ION		N = 10 2,2,8	0 - - 1 -			FILL: Silty sand, fine to coarse grained, brown, with root fibres. FILL: Sand, fine to coarse grained, grey and brown, with medium to coarse grained sandstone gravel. as above, but with polystyrene fragments.	D M			GRASS COVER APPEARS MODERATELY COMPACTED	
		N = 14 6,7,7	2 – -			END OF BOREHOLE AT 1.95m				-	
			- - 3 - -							- - -	
			- 4 – - -							- - -	
			- 5 — - -							- - - -	
			- 6 - - - - - 7 -							- - -	

BOREHOLE LOG

Borehole No.

15

1/1

E 337451 N 6265425

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.0m

	: 26-9-17						Datum: AHD			
					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET			0	XXXX	SP	FILL: Silty sand, fine to coarse grained, brown, with roots.	M M	L		GRASS COVER - ALLUVIAL
ION		N = 8 3,4,4	- -			SAND: fine to coarse grained, orange brown, trace of clay.	IVI _F	_		- - -
			1 - -		SC	CLAYEY SAND: fine to coarse grained, orange brown and grey.				-
		N = 10 3,4,6	- - 2 -			END OF BOREHOLE AT 1.95m		MD		-

BOREHOLE LOG

Borehole No.

16

1/1

E 337451 N 6265433

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 73.7m

Date:	26-9	-17	JK350 Datum: AF						AHD	
					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 DB DS SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION			0 -			FILL: Silty sand, fine to coarse grained, brown, with roots.	М			GRASS COVER
ION		N = 8 3,4,4	- - - 1 –		SC	CLAYEY SAND: fine to coarse grained, orange brown.	М	L		- ALLUVIAL - - -
		N = 14 5,6,8	-			CLAYEY SAND: fine to coarse grained, orange brown and grey.		MD		-
			2 3 5			END OF BOREHOLE AT 1.95m				

BOREHOLE LOG

Borehole No.

17

1/1

E 337449 N 6265404

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.4m

Date	: 26-9	-17	JK350					Datum: AHD			
					Logo	ged/Checked by: T.C./W.T.					
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET			0			FILL: Silty sand, fine to coarse grained, brown, with root fibres.	М			GRASS COVER	
ION		N = 7 3,3,4	- - - 1 –		SP	SAND: fine to coarse grained, dark brown, with clay.	М	L		ALLUVIAL	
		N = 20 4,10,10	- - -		SC	CLAYEY SAND: fine to coarse grained, red brown and grey.		MD		- - -	
			2 3			END OF BOREHOLE AT 1.95m					

BOREHOLE LOG

Borehole No.

18

1/1

E 337482 N 6265396

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.1m

Date:	: 26-9	-17	JK350					Datum: AHD			
					Logo	ged/Checked by: T.C./W.T.					
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET			0 -			FILL: Silty sand, fine to coarse grained, brown, with root fibres.	М			GRASS COVER	
ION		N = 17 20,11,6	- - -			FILL: Clayey sand, fine to coarse grained, orange brown.				- APPEARS WELL - COMPACTED	
		N = 1	1 - - -			FILL: Clayey sand, fine to coarse grained, grey and brown, timber and plastic fragments.				- - - APPEARS	
		0,0,1	2 –							POORLY COMPACTED	
						END OF BOREHOLE AT 1.95m					

BOREHOLE LOG

Borehole No.

19

E 337480 N 6265371

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.2m

Date	: 26-9	-17				JK350	Datum: AHD			
					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION			0 - -		SC	FILL: Silty sand, fine to coarse grained, brown, with root fibres. CLAYEY SAND: fine to coarse grained, orange brown and grey.	M M	MD		GRASS COVER - ALLUVIAL
		N = 10 8,6,4	- - 1 –							- -
			-			CLAYEY SAND: fine to coarse				-
		N = 10 5,4,6	2 -			grained, orange brown and grey. END OF BOREHOLE AT 1.95m				-
			- - -							- - -
			3 -							-
			-							-
			4 - -							-
			- - -							- - -
			5 — -							-
			- -							-
			6 - -							-
			- - 7_							-

BOREHOLE LOG

Borehole No.

20

1/1 E 337509 N 6565341

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 74.6m

Job N	o. 30	1807SY	Y Method: SPIRAL AUGER JK350					R.L. Surface: 74.6m					
Date:	26-9	-17							Datum: AHD				
					Logg	ged/Checked by: T.C./W.T.							
Groundwater Record	U50 SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLET-		Ľ	0	e XXXX	SM	FILL: Silty sand, fine to coarse grained, brown, with roots.	M M /	ν L	IUC	GRASS COVER			
ION		N = 13 6,8,5	- - 1 - -		G.W.	SILTY SAND: fine to coarse grained, brown and orange brown, with clay.	, M ,	L		ALLUVIAL			
			2			END OF BOREHOLE AT 1.95m				-			
			3 —										
			6 - - - - 7							- - - -			

BOREHOLE LOG

Borehole No.

21

1/1

E 337554 N 6265336

Client: OXFORD FALLS GRAMMAR SCHOOL

Project: PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS

Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW

Job No. 30807SY Method: SPIRAL AUGER R.L. Surface: 73.5m

Date	Date: 26-9-17					Datum: AHD				
					Logg	ged/Checked by: T.C./W.T.				
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE ION	T-		0 - - - 1 -			FILL: Silty sand, fine to coarse grained, brown and orange brown, with fine to medium grained sandstone gravel, trace of clay.	M			GRASS COVER
		N = 6 4,4,2	-		SC	CLAYEY SAND: fine to coarse grained, orange brown and grey.	M	_ <u>_</u> _		- ALLUVIAL
			2			END OF BOREHOLE AT 1.95m				

EXPLANATORY NOTES - ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 – 50
Firm	50 – 100
Stiff	100 – 200
Very Stiff	200 – 400
Hard	Greater than 400
Friable	Strength not attainable – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

SOIL		ROCK		DEFEC	TS AND INCLUSION
	FILL	-00 96:	CONGLOMERATE	7777	CLAY SEAM
	TOPSOIL		SANDSTONE		SHEARED OR CRUSHED SEAM
	CLAY (CL, CH)		SHALE	0 0 0 0	BRECCIATED OR SHATTERED SEAM/ZONE
	SILT (ML, MH)		SILTSTONE, MUDSTONE, CLAYSTONE	4 4	IRONSTONE GRAVEL
	SAND (SP, SW)		LIMESTONE	KWWWW	ORGANIC MATERIAL
ව රුදු අඩු පිටු පි දුරු අ	GRAVEL (GP, GW)		PHYLLITE, SCHIST	OTHE	R MATERIALS
	SANDY CLAY (CL, CH)		TUFF	700 S	CONCRETE
	SILTY CLAY (CL, CH)	不完	GRANITE, GABBRO		BITUMINOUS CONCRETE COAL
	CLAYEY SAND (SC)	* * * * + * * + + * + * * * * *	DOLERITE, DIORITE		COLLUVIUM
	SILTY SAND (SM)		BASALT, ANDESITE		
199	GRAVELLY CLAY (CL, CH)		QUARTZITE		
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CLAYEY GRAVEL (GC)				
	SANDY SILT (ML)				
K, M, M, M	PEAT AND ORGANIC SOILS				

	(Excluding part	Field Ident	ification Proceed than 75 μm and steel weights	iures d basing fracti	ons on	Group Symbols	Typical Names	Information Required for Describing Soils			Laboratory Classification Criteria	
	coarsc than ze	Clean gravels (little or no fines)	Wide range i		nd substantial diate particle	GW	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name; indicate ap- proximate percentages of sand	grain size	e grained soils are classified as follows: GW, GP, SW, SP GM, GC, SM, SC GM, GC, SM, SC dual symbols	$C_{\text{U}} = \frac{D_{60}}{D_{10}}$ Greater than $C_{\text{C}} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ Betw	4 cen I and 3
		Clear			range of sizes sizes missing	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	and gravel; maximum size; angularity, surface condition, and hardness of the coarse grains; local or geologic name	from g	ified as quiring	Not meeting all gradation re	quirements for GW
s rial is sizeb	202	s with s ciable it of	Nonplastic fi	ines (for ident	ification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses	on d sand raction	W, SP W, SP M, SC ases rec	"A" line, or PI less than 4	Above "A" line with PI between 4 and 7 are
of mater m sieve	More fract	Gravels with fines (appreciable amount of fines)	Plastic fines (f	for identifications)	on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	ntification avel an fines (for	d soils a GP, SI, GC, S, derline dual symi	Atterberg limits above "A" line, with PI greater than 7	borderline cases requiring use of dual symbols
Coarse-grained soils More than half of material is larger than 75 µm sieve sizeh smallest particle visible to naked eye)	Sands than half of coarse ion is smaller than inm sieve size	Clean sands (little or no fines)	Wide range in	n grain sizes as of all interme	nd substantial diate particle	SW	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20 %	der fleld identification itages of gravel and reentage of fines (fra	μm sieve size) coarse grained soils are classified as follows: Less than 5% GW, GP, SW, SP More than 12% GW, GC, SM, SC 5% to 12% Borderline cases requiring use of dual symbols	$C_{\rm U} = rac{D_{60}}{D_{10}}$ Greater than $C_{\rm C} = rac{(D_{30})^2}{D_{10} \times D_{60}}$ Between	6 en 1 and 3
More t larger article v	nds alf of smaller ieve siz	Clea	Predominanti with some	y one size or a intermediate	range of sizes sizes missing	SP	Poorly graded sands, gravelly sands, little or no fines	hard, angular gravel par- ticles 12 mm maximum size; rounded and subangularsand	given under ne percentag ing on percer	size) co an 5% han 12 12%	Not meeting all gradation re	equirements for SW
nallest p	Sale than h	Sands with fines (appreciable amount of fines)	Nonplastic fit	nes (for ident see ML below)		SM	Silty sands, poorly graded sand- silt mixtures	grains coarse to fine, about 15% non-plastic fines with low dry strength; well com- pacted and moist in place;	ns as giv termine urve pending	Less th More 1 5% to	Atterberg limits below "A" line or PI less than	Above "A" line with PI between 4 and 7 are borderline cases
t the sm		Sands fr (appre amou	Plastic fines (for identification procedures, see CL below)				Clayey sands, poorly graded sand-clay mixtures	alluvial sand; (SM)	E	•	Atterberg limits below "A" line with PI greater than 7	requiring use of dual symbols
noo	Identification	Procedures	on Fraction Sm	aller than 380	μm Sieve Size				the state of			
aller e size is al			Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				identifying the	Comparin	ng soils at equal liquid limit	
soils terial is smaller eve size 75 µm sieve si	Silts and clays	s than 50	None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	y index	O Toughner with incr	ss and dry strength increase easing plasticity index	uni .
Fine-grained soils than half of material is than 75 µm sieve size (The 75 µm s	Silts	8	Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	Plasticity			OH
hall n 73			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	1	O CL	OL Or	МН
re than	Silts and clays Iquid limit greater than		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	mation on structure, stratifica- tion, consistency in undisturbed and remoulded states, moisture and drainage conditions		0 10	20 30 40 50 60 70	80 90 100
More	s and	8	High to very high	None	High	CH	Inorganic clays of high plas- ticity, fat clays	Example:			Liquid limit	
	Sills		Medium to	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of		for labora	Plasticity chart atory classification of fine	grained soils
н	ighly Organic S	oils	Readily iden	tified by co	lour, odour,	Pt	Peat and other highly organic soils	fine sand; numerous vertical root holes; firm and dry in place; loess; (ML)				

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

LOG COLUMN	SYMBOL	DEFINITION	
		Standing water level. Time delay following completion of drilling may be s	shown.
Groundwater Record		Extent of borehole collapse shortly after drilling.	
		Groundwater seepage into borehole or excavation noted during drilling or	excavation.
	ES	Soil sample taken over depth indicated, for environmental analysis.	
	U50	Undisturbed 50mm diameter tube sample taken over depth indicated.	
Samples	DB DS	Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated.	
·	ASB	Soil sample taken over depth indicated, for asbestos screening.	
	ASS	Soil sample taken over depth indicated, for acid sulfate soil analysis.	
	SAL	Soil sample taken over depth indicated, for salinity analysis.	
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by line show blows per 150mm penetration. 'R' as noted below.	es. Individual
Field Tests	_	Solid Cone Penetration Test (SCPT) performed between depths indicated by lingures show blows per 150mm penetration for 60 degree solid cone driven by 'R' refers to apparent hammer refusal within the corresponding 150mm depth	y SPT hammer.
	3 R		
	VNS = 25	Vane shear reading in kPa of Undrained Shear Strength.	
	PID = 100	Photoionisation detector reading in ppm (Soil sample heads pace test).	
Moisture	MC>PL	Moisture content estimated to be greater than plastic limit.	
(Cohesive Soils)	MC≈PL	Moisture content estimated to be approximately equal to plastic limit.	
(0.1)	MC <pl D</pl 	Moisture content estimated to be less than plastic limit. DRY – Runs freely through fingers.	
(Cohesionless)	M	MOIST - Does not run freely but no free water visible on soil surface	
	W	WET - Free water visible on soil surface.	•
Strength	VS	VERY SOFT - Unconfined compressive strength less than 25kPa	
(Consistency) Cohesive Soils	S	SOFT – Unconfined compressive strength 25-5 0kPa	
Collesive Solls	F St	FIRM - Unconfined compressive strength 50-1 00kPa STIFF - Unconfined compressive strength 100- 200kPa	
	VSt	STIFF - Unconfined compressive strength 100- 200kPa VERY STIFF - Unconfined compressive strength 200- 400kPa	
	H	HARD – Unconfined compressive strength 200-400kla	
	()	Bracketed symbol indicates estimated consistency based on tactile examin tests.	ation or other
Density Index/		Density Index (ID) Range (%) SPT ' N' Value Range (Blo	ows/300mm)
Relative Density (Cohesionless Soils)	VL L	Very Loose <15	
200,	MD	Medium Dense 35-65 10-30	
	D	Dense 65-85 30-50	
	VD	Very Dense >85 >50	
	()	Bracketed symbol indicates estimated density based on ease of drilling or	other tests.
Hand Panetrometer	300	Numbers indicate individual test results in kPa on representative undistur	bed
Penetrometer Readings	250	material unless noted otherwise	
Remarks	'V' bit	Hardened steel 'V' shaped bit.	
	'TC' bit	Tungsten carbide wing bit.	
	T ₆₀	Penetration of auger string in mm under static load of rig applied by drill hydraulics without rotation of augers.	nead

LOG SYMBOLS CONTINUED

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	Is (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL		May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	М	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	Н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	VH	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	EH		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

ROCK STRENGTH

ABBREVIATION	DESCRIPTION	NOTES
Be CS	Bedding Plane Parting Clay Seam	Defect orientations measured relative to the normal to (i.e. relative to horizontal for vertical holes)
J	Joint	
Р	Planar	
Un	Undulating	
S	Smooth	
R	Rough	
IS	Iron stained	
XWS	Extremely Weathered Seam	
Cr	Crushed Seam	
60t	Thickness of defect in millimetres	

Appendix D: Laboratory Report & COC Documents

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB: 12 ASHLEY: CHATSWOO P: (02) 9910 F: (02) 9910 Attention: Ail	STREET D NSW 6200 6201			EIS Job Number: Date Res Required Page:	sults	E30807KM STANDARD					ENV INVE SERT REA MAC P: 03	FROM: ENVIRONMENTAL INVESTIGATION SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Rob Muller								
Location:	Oxford	Falls	9/19/19		12			Sample Preser					ved in Esky on Ice							
Sampler:	Tom C	lent	HE LEE							Tests Required										
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample	Combo 3	Combo 3a	Combo 6	Combo 6a	8 Metals	PAHs	TRH/BTEX	втех	Asbestos					
25/09/2017	1	BH1	0.0-0.2	G, A	0	Fill: silty sand				X										
25/09/2017	2	BH1	2.0-2.5	G, A	0	Clayey sand	Х													
25/09/2017	3	BH2	0.0-0.2	G, A	0	Fill: silty sand		X												
25/09/2017	4	вн2	0.5-0.95	G, A	0	Fill: sand	X													
25/09/2017	5	внз	0.0-0.2	G, A	0	Fill: silty sand		X			1									
25/09/2017	6	вн6	0.0-0.2	G, A	0	Fill: silty sand				X										
25/09/2017	7	вн6	3.0-3.45	G, A	0	Fill: sand	X													
26/09/2017	8	вн9	0.0-0.2	G, A	0	Fill: silty sand				X					16					
26/09/2017	9	BH11	0.0-0.2	G, A	0	Fill: silty sand				X										
26/09/2017	10	BH12	0.0-0.2	G, A	0	Fill: silty sand		X												
26/09/2017	11	BH13	0.5-0.95	G, A	0	Fill: sand		X				-								
26/09/2017	12	BH16	0.0-0.2	G, A	0	Fill: silty sand	X													
26/09/2017	13	BH18	0.0-0.2	G, A	0	Fill: silty sand				X										
26/09/2017	14	BH18	1.5-1.95	G, A	0	Fill: clayey sand	X													
26/09/2017	15	BH19	0.0-0.2	G, A	0	Fill: silty sand		X												
																	= 1			
													erein	SRE			12 As	hley \$		
					-								-		Ch		2) 991	W 2067 0 620		
													Job (to:	1	666	1 1			
		_								-			Date I	ccei	ved:	1	9/1	7		
													era.	0	/ :	MI	1112			
Remarks (cor	nments	detection lin	nits required)				Sami	ole Co	ntaine	ers:			lemp.	0	Ambi	ent (414			
			4				G - 2 A - Z P - P	50mg iplock astic	Glas: Asbe	s Jar estos				C	1	roken/				
Relinquished	By: 11	ullon		Date:	28/9/	17	Time	2:/	Spr	n	Rece	A7	By: EU	3		Date: 281	9/1	2		

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Rob Muller

Sample Login Details	
Your reference	E30807KM, Oxford Falls
Envirolab Reference	176661
Date Sample Received	28/09/2017
Date Instructions Received	28/09/2017
Date Results Expected to be Reported	06/10/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	15 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	Organophosphorus Pesticides	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils
BH1-0.0-0.2	✓	✓	✓	✓	✓	✓	✓	✓
BH1-2.0-5.0	✓	✓	✓				✓	
BH2-0.0-0.2	✓	✓	✓				✓	✓
BH2-0.5-0.95	✓	✓	✓				✓	
BH3-0.0-0.2	✓	✓	✓				✓	✓
BH6-0.0-0.2	✓	✓	✓	✓	✓	✓	✓	✓
BH6-3.0-3.45	✓	✓	✓				✓	
BH9-0.0-0.2	✓	✓	✓	✓	✓	✓	✓	✓
BH11-0.0-0.2	✓	✓	✓	✓	✓	✓	✓	✓
BH12-0.0-0.2	✓	✓	✓				✓	✓
BH13-0.5-0.95	✓	✓	✓				✓	✓
BH16-0.0-0.2	✓	✓	✓				✓	
BH18-0.0-0.2	✓	✓	✓	✓	✓	✓	✓	✓
	√	1	✓				1	
BH18-1.5-1.95	V	Ψ_	Ψ_					

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 176661

Client Details	
Client	Environmental Investigation Services
Attention	Rob Muller
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E30807KM, Oxford Falls
Number of Samples	15 Soil
Date samples received	28/09/2017
Date completed instructions received	28/09/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Detail	Is	ta	e	D	rt	וכ	D	е	R
---------------	----	----	---	---	----	----	---	---	---

Date results requested by 06/10/2017

Date of Issue 06/10/2017

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Paul Ching Authorised by Asbestos Approved Signatory: Paul Ching

Results Approved By

Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Paul Ching, Senior Analyst Steven Luong, Chemist **Authorised By**

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	ВН3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	129	127	127	116	130

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	BH6	BH6	ВН9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	128	96	112	88	127

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	123	130	105	117	102

svTRH (C10-C40) in Soil						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	ВН3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	30/09/2017	30/09/2017	30/09/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	80	82	79	81

svTRH (C10-C40) in Soil						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	BH6	BH6	ВН9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	30/09/2017	30/09/2017	30/09/2017	30/09/2017	30/09/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	76	80	84	83

svTRH (C10-C40) in Soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	30/09/2017	30/09/2017	30/09/2017	30/09/2017	30/09/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	79	85	85	79	85

PAHs in Soil						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.3	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.3	<0.05	0.1	1.4	<0.05
Surrogate p-Terphenyl-d14	%	106	99	98	102	98

PAHs in Soil						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	ВН6	BH6	ВН9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.06	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	0.1	0.4	<0.05
Surrogate p-Terphenyl-d14	%	101	105	101	103	101

PAHs in Soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	97	107	103	105	105

Organochlorine Pesticides in soil						
Our Reference		176661-1	176661-6	176661-8	176661-9	176661-13
Your Reference	UNITS	BH1	BH6	BH9	BH11	BH18
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	78	86	80	90

Organophosphorus Pesticides						
Our Reference		176661-1	176661-6	176661-8	176661-9	176661-13
Your Reference	UNITS	BH1	BH6	ВН9	BH11	BH18
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	78	86	80	90

PCBs in Soil						
Our Reference		176661-1	176661-6	176661-8	176661-9	176661-13
Your Reference	UNITS	BH1	ВН6	ВН9	BH11	BH18
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	80	78	86	80	90

Acid Extractable metals in soil						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Arsenic	mg/kg	6	<4	5	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	8	7	16	7
Copper	mg/kg	10	1	18	15	6
Lead	mg/kg	34	9	23	73	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	2	2	2	2
Zinc	mg/kg	79	13	51	63	31

Acid Extractable metals in soil						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	вн6	BH6	ВН9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Arsenic	mg/kg	<4	<4	8	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	7	13	9	7
Copper	mg/kg	5	13	29	12	10
Lead	mg/kg	13	21	56	25	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	2	4	7	2
Zinc	mg/kg	39	100	200	45	42

Acid Extractable metals in soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Arsenic	mg/kg	<4	6	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	12	6	19	7
Copper	mg/kg	2	31	13	3	10
Lead	mg/kg	9	36	13	8	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	4	3	2	3
Zinc	mg/kg	21	160	48	220	49

Moisture						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Moisture	%	6.9	13	6.4	9.5	7.9

Moisture						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	ВН6	ВН6	ВН9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Moisture	%	6.1	15	9.6	4.1	6.7

Moisture						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Moisture	%	11	2.2	0.8	20	1.2

Asbestos ID - soils						
Our Reference		176661-1	176661-3	176661-5	176661-6	176661-8
Your Reference	UNITS	BH1	BH2	ВН3	вн6	ВН9
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	6/10/2017	6/10/2017	6/10/2017	6/10/2017	6/10/2017
Sample mass tested	g	Approx. 15g	Approx. 15g	Approx. 25g	Approx. 25g	Approx. 50g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks			
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit o 0.1g/kg			
		Organic fibre detected	Organic fibre detected	Organic fibre detected	Organic fibre detected	Organic fibre detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Asbestos ID - soils						
Our Reference		176661-9	176661-10	176661-11	176661-13	176661-15
Your Reference	UNITS	BH11	BH12	BH13	BH18	BH19
Depth		0.0-0.2	0.0-0.2	0.5-0.95	0.0-0.2	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	6/10/2017	6/10/2017	6/10/2017	6/10/2017	6/10/2017
Sample mass tested	g	Approx. 25g	Approx. 15g	Approx. 15g	Approx. 40g	Approx. 25g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown coarse- grained soil & rocks	Brown sandy soil	Brown coarse grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at	No asbestos detected at	No asbestos detected at	No asbestos detected at	No asbestos detected at

reporting limit of 0.1g/kg

Organic fibre detected

No asbestos

detected

reporting limit of

0.1g/kg

Organic fibre

detected

No asbestos

detected

reporting limit of

0.1g/kg

Organic fibre

detected

No asbestos

detected

reporting limit of

0.1g/kg

Organic fibre detected

No asbestos

detected

Envirolab Reference: 176661 Revision No: R00

Trace Analysis

reporting limit of 0.1g/kg

Organic fibre detected

No asbestos

detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Stainin Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual
	ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> </pql></pql></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum
	of the positive individual Xylenes.

QUALITY CON	TROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Date analysed	-			03/10/2017	1	03/10/2017	03/10/2017		03/10/2017	03/10/2017
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	115	90
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	115	90
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	97	84
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	107	90
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	123	93
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	123	92
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	121	94
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	124	1	129	125	3	129	99

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil							Duplicate					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]			
Date extracted	-			[NT]	13	29/09/2017	29/09/2017						
Date analysed	-			[NT]	13	03/10/2017	03/10/2017						
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	13	<25	<25	0					
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	13	<25	<25	0					
Benzene	mg/kg	0.2	Org-016	[NT]	13	<0.2	<0.2	0					
Toluene	mg/kg	0.5	Org-016	[NT]	13	<0.5	<0.5	0					
Ethylbenzene	mg/kg	1	Org-016	[NT]	13	<1	<1	0					
m+p-xylene	mg/kg	2	Org-016	[NT]	13	<2	<2	0					
o-Xylene	mg/kg	1	Org-016	[NT]	13	<1	<1	0					
naphthalene	mg/kg	1	Org-014	[NT]	13	<1	<1	0					
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	13	105	128	20					

QUALITY CC	NTROL: svT	RH (C10	-C40) in Soil		Duplicate Spik					ke Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6	
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017	
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	30/09/2017	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	111	112	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	109	112	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	106	82	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	111	112	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	109	112	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	106	82	
Surrogate o-Terphenyl	%		Org-003	83	1	82	83	1	95	82	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	13	29/09/2017	29/09/2017		[NT]	
Date analysed	-			[NT]	13	30/09/2017	30/09/2017		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	13	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	13	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	13	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	13	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	13	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	13	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-003	[NT]	13	85	83	2	[NT]	

QUALI	TY CONTRO	L: PAHs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date extracted	-			27/09/2017	1	27/09/2017	27/09/2017		27/09/2017	27/09/2017
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	89	92
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	97	96
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	101	101
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	96	97
Pyrene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	93	93
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	93	91
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.06	<0.05	18	[NT]	[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	108	1	106	103	3	112	111

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	13	27/09/2017	27/09/2017			[NT]
Date analysed	-			[NT]	13	29/09/2017	29/09/2017			[NT]
Naphthalene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	13	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	13	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	13	103	102	1		[NT]

QUALITY CON	TROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6	
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017	
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017	
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	95	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	94	
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	87	91	
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	83	87	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	84	88	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	93	
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	96	101	
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	81	85	
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	86	90	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	92	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-005	78	1	80	78	3	73	78	

QUALITY CO	NTROL: Organ	ophosph	orus Pesticides	Duplicate					Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6		
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017		
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	83	88		
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	84	89		
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	82	88		
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	95	93		
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	105	99		
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	94	96		
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	93	99		
Surrogate TCMX	%		Org-008	78	1	80	78	3	82	86		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	100	104
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCLMX	%		Org-006	78	1	80	78	3	82	86

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date prepared	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Date analysed	-			03/10/2017	1	03/10/2017	03/10/2017		03/10/2017	03/10/2017
Arsenic	mg/kg	4	Metals-020	<4	1	6	6	0	114	100
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	104	100
Chromium	mg/kg	1	Metals-020	<1	1	9	8	12	111	98
Copper	mg/kg	1	Metals-020	<1	1	10	9	11	104	98
Lead	mg/kg	1	Metals-020	<1	1	34	31	9	105	96
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	95	98
Nickel	mg/kg	1	Metals-020	<1	1	3	3	0	107	100
Zinc	mg/kg	1	Metals-020	<1	1	79	66	18	124	87

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	13	29/09/2017	29/09/2017			[NT]
Date analysed	-			[NT]	13	03/10/2017	03/10/2017			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	13	<4	<4	0		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	13	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	13	6	9	40		[NT]
Copper	mg/kg	1	Metals-020	[NT]	13	13	12	8		[NT]
Lead	mg/kg	1	Metals-020	[NT]	13	13	13	0		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	13	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	13	3	3	0		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	13	48	47	2		[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality	Contro	ol Definitions
	Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Б	Ouplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Mati	rix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
•	boratory Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surroga	ate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 176661 Page | 26 of 26

Revision No: R00

Appendix E: Soil Suitability Analysis Report and Recommendations

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax:

PO Box 357 info@sesl.com.au Mailing Address: Em: Pennant Hills NSW 1715 Web: www sest com au

Batch N°: 45188 Sample N°: 1 Date Received: 3/10/17

Client Name: **Environmental Investigation Services**

Project Name: Soil assessment for School Oval

Client Contact: Rob Muller

Client Job N°: SESL Quote N°: Q7388 Client Order N°: Sample Name: BH1 0.0-0.2 Description: Soil

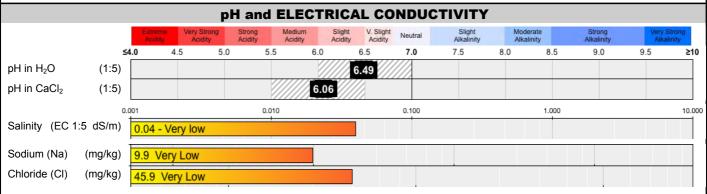
Address: PO Box 976

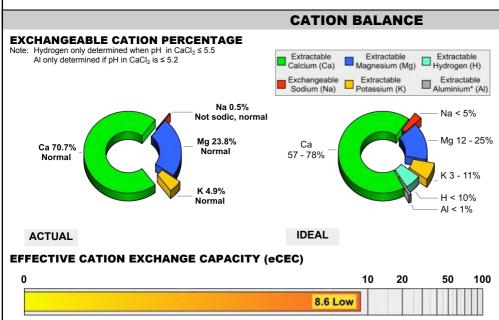
> NORTH RYDE BC NSW 1670 Test Type: FSC, OM WB, BSP

RECOMMENDATIONS

Sample 'BH1 0.0-0.2' was tested to determine its use in a school oval. The soil is slightly acidic in CaCl2 with desirably low salinity, sodium and chloride levels. The cation exchange is close to being balanced. The eCEC is low indicating poor nutrient retention. Nitrate, potassium and sulphate need boosting. Organic matter = 6.2% (very high).

The soil is a light sandy clay loam with a weak crumb structure and rapid permeability. The soil once compacted through pedestrian traffic especially during wet periods will start to waterlog and turf growth will fail. We suggest capping the soil with an imported media is used as passive amenity turf. However if this soil is to be used as a sportsfield further management is required.


Amendment Strategy


We recommend adding 30g/m2 of urea to boost nitrogen.

Add sulphate of potash at 40g/m2.

To help withstand compaction for passive amenity turf cap existing ameliorated soil with 100mm of an imported 80/20 media. Alternatively use the soil from Sample 3 to cap this soil.

SOIL SAMPLE DEPTH (mm): ⊙ 100 ○ 150 ○ 200 **FERTILITY RATING:** O Low **O** Moderate O High

CATION RATIOS										
Ratio		Result	Tar	get Ran	ige					
Ca:M	g	3	4	.1 – 6.0)					
Comment: Calcium low										
Mg:K 4.9 2.6 – 5.0										
Comment: Balanced										
K/(Ca+Mg) 0.05 < 0.07										
Comr	ment: A	cceptat	ole							
K:Na		10.5		N/A						
Sodi	um Abs	orption	n Ratio:	D.N.T.						
EXC	HANGE	ABLE CA	ATIONS	cmol(+)	/kg					
Na:	K:	Ca:	Mg:	H:	AI:					
0.04	0.04 0.42 6.08 2.05									
SOLUBLE CATIONS cmol(+)/kg										
Na:	K	:	Ca:	Mg:						

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 Thornleigh NSW 2120 1300 64 46 89 Fax:

Mailing Address: PO Box 357 info@sesl.com.au Em: Pennant Hills NSW 1715 Web: www.sesl.com.au

Batch N°: 45188 Sample N°: 1 Date Received: 3/10/17

		PL	ANT A	VAILABLE	NUTRIENT	S			
Major Nutrients	Result (mg/kg)	Very Low	Low	Marginal	Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustment (g/sqm)
Nitrate-N (NO ₃)	7						0.9	4	3.1
Phosphate-P (PO ₄)	101						13.4	8.4	Drawdown
Potassium (K) [†]	165						21.9	29.3	7.4
Sulphate-S (SO ₄)	3.5						0.5	9	8.5
Calcium (Ca) †	1220						162.3	208.3	46
Magnesium (Mg) †	249						33.1	21.7	Drawdown
Iron (Fe)	475			<u> </u>			63.2	73.4	10.2
Manganese (Mn) †	11						1.5	5.9	4.4
Zinc (Zn) †	29						3.9	0.7	Drawdown
Copper (Cu)	3.5						0.5	0.8	0.3
Boron (B) †	<0.1						0	0.4	0.4

Explanation of graph ranges:

Very Low Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.

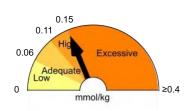
Low Potential "hidden hunger", or sub-clinic deficiency. Potential response to nutrient addition is 60 to 90% Marginal

Supply of this nutrient is barely adequate for the plant, and build-up is still recommended. otential response to itrient addition is 30 60%.

Adequate

Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to

Hiah


The level is excess may be detrimental growth (i.e. phytoto may contribute to p ground and surface

NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the Adequate band, which maximises growthlyield, and economic efficiency, and minimises impact on the

Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed

g/sqm measurements are based on soil bulk density of 1.33 tonne/m³ and selected soil depth.

Phosphorus Saturation Index

0.15

Excessive. Exceeds environmental threshold. Implement improved P management to reduce potential for nonpoint P pollution.

Exchangeable Acidity

Adams-Evans Buffer pH (BpH): Sum of Base Cations (meq/100g⁻¹): 8.6 Eff. Cation Exch. Capacity (eCEC): Base Saturation (%): 100 Exchangeable Acidity (meq/100g⁻¹): Exchangeable Acidity (%):

Lime Application Rate

- to achieve pH 6.0 (g/sqm): 0 - to neutralise Al (g/sqm):

Gypsum Application Rate

- to achieve 67.5% exch. Ca (g/sqm): 0 The CGAR is corrected for a soil depth of 100mm and any Lime addition to achieve pH 6.0.

Physical Description

Texture: **Light Sandy Clay Loam** Colour: Estimated clay content: 25% Size: Fine (1 - 10mm) Gravel content: Gravelly Aggregate strength: Pedal - Weak Structural unit: Crumb Potential infiltration rate: Rapid Permeability (mm/hr): >120 Calculated EC_{SE} (dS/m): 0.4

- Non-saline. Salinity effects on plants are mostly negligible.

Organic Carbon (OC%)[†]: 2.8 – Very high

Organic Matter (OM%): 6.2

Additional comments:

Consultant: Chantal Milner

Authorised Signatory: Simon Leake

Date Report Generated 16/10/2017

METHOD REFERENCES:

ME I HOU KEI LINESSEN (1992) 4A1, pt (1:5 Hg.) Fayment & Higginson (1992) 4A1, pt (1:5 CaCls.) - Rayment & Higginson (1992) 4B1, EC (1:5) - Rayment & Higginson (1992) 3A1, Chioride - Rayment & Higginson (1992) 5A2, Nitrate - Rayment & Higginson (1992) 7B1 Aluminium - SESI. n-house Aluminium - SESI. n-house Aluminium - SESI. n-house Berger (1992) 7B1 Aluminium - SESI. n-house SESI. n-house (1992) 7B2 - Adams-Evans (199

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax: PO Box 357 info@sesl.com.au Em:

Mailing Address:

Pennant Hills NSW 1715 Web: www sest com au

Batch N°: 45188 Sample N°: 2 Date Received: 3/10/17

Client Name: **Environmental Investigation Services**

Project Name: Soil assessment for School Oval

Client Contact: Rob Muller

Client Job N°: SESL Quote N°: Q7388 Client Order N°: Sample Name: BH4 0.5-0.95 Description: Soil

Address: PO Box 976

NORTH RYDE BC NSW 1670 Test Type: FSC, OM WB, BSP

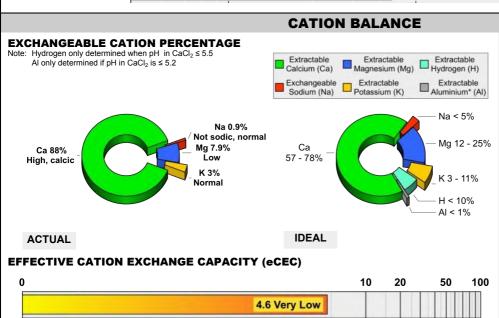
RECOMMENDATIONS

Sample 'BH4 0.5-0.95' was tested to determine its use in a school oval. The soil is slightly acidic in CaCl2 with desirably low salinity, sodium and chloride levels. The cation exchange is calcic. The eCEC is low indicating poor nutrient retention. All nutrients need boosting aside from phosphorus. Organic matter = 1.1% (very low).

The soil is a sandy clay loam with a moderate crumb structure and moderate permeability. The soil once compacted through pedestrian traffic especially during wet periods will start to waterlog and turf growth will fail. We suggest capping the soil with an imported media is used as passive amenity turf. However if this soil is to be used as a sportsfield further management is required.

Amendment Strategy

Chloride (CI)


(mg/kg)

74.2 Very Low

We recommend adding a multipurpose NPK+TE fertliser that has low P.

To help withstand compaction for passive amenity turf cap existing ameliorated soil with 100mm of an imported 80/20 media. Alternatively use the soil from Sample 3 to cap this soil.

SOIL SAMPLE DEPTH (mm): ⊙ 100 ○ 150 ○ 200 **FERTILITY RATING:** O Low **O** Moderate O High pH and ELECTRICAL CONDUCTIVITY 4.5 9.0 ≤4.0 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.5 ≥10 pH in H₂O (1:5)6.61 pH in CaCl₂ 6.29 (1:5)1.000 10.000 Salinity (EC 1:5 dS/m) 0.04 - Very low Sodium (Na) (mg/kg) 9.4 Very Low

CAT	ION R	ATIOS							
Ratio	ı	Result	Tar	get Rar	ige				
Ca:M	g	11.3	4	1.1 – 6.0)				
Comment: Potential magnesium									
Mg:K	,	2.6	2	2.6 – 5.0)				
Comr	nent: B	alanced	t						
K/(Ca	ı+Mg)	0.03		< 0.07					
Comr	nent: A	cceptat	ole						
K:Na		3.5		N/A					
Sodiu	ım Abs	orption	n Ratio:	D.N.T.					
EXC	HANGE	ABLE CA	ATIONS	cmol(+)	/kg				
Na:	K:	Ca:	Mg:	H:	AI:				
0.04	0.14	4.05	0.36						
SOLUBLE CATIONS cmol(+)/kg									
Na:	K	:	Ca:	Mg:					

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 Thornleigh NSW 2120 1300 64 46 89 Fax:

Mailing Address: PO Box 357 info@sesl.com.au Em: Pennant Hills NSW 1715 Web: www.sesl.com.au

Batch N°: 45188 Sample N°: 2 Date Received: 3/10/17

		PL	ANT A	AILABLE	NUTRIENT	S			
Major Nutrients	Result (mg/kg)	Very Low	Low	Marginal	Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustment (g/sqm)
Nitrate-N (NO ₃)	1.7						0.2	4	3.8
Phosphate-P (PO ₄)	109						14.5	8.4	Drawdown
Potassium (K) †	55						7.3	23.7	16.4
Sulphate-S (SO ₄)	20						2.7	9	6.3
Calcium (Ca) †	811						107.9	168.5	60.6
Magnesium (Mg) †	44						5.9	17.8	11.9
Iron (Fe)	223						29.7	73.4	43.7
Manganese (Mn) †	3.1						0.4	5.9	5.5
Zinc (Zn) †	32						4.3	0.7	Drawdown
Copper (Cu)	1.6						0.2	0.8	0.6
Boron (B) †	<0.1						0	0.4	0.4

Explanation of graph ranges:

Very Low Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.

Low Potential "hidden hunger", or sub-clinic deficiency. Potential response to nutrient addition is 60 to 90% Marginal

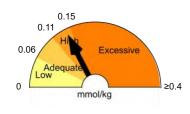
Supply of this nutrient is barely adequate for the plant, and build-up is still recommended. otential response to itrient addition is 30 60%.

Adequate

Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to

Hiah

The level is excessive and may be detrimental to plant growth (i.e. phytotoxic) and may contribute to pollution of ground and surface waters. Drawdown is recommended. Potential response to nutrient


NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the Adequate band, which maximises growthlyield, and economic efficiency, and minimises impact on the

environment.

Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed

g/sqm measurements are based on soil bulk density of 1.33 tonne/m³ and selected soil depth.

Phosphorus Saturation Index

0.14 High. Soil P will not limit plant growth. No P

recommended this season.

Exchangeable Acidity

Adams-Evans Buffer pH (BpH): Sum of Base Cations (meq/100g⁻¹): 4.6 Eff. Cation Exch. Capacity (eCEC): Base Saturation (%): 100 Exchangeable Acidity (meq/100g⁻¹): Exchangeable Acidity (%):

Lime Application Rate

- to achieve pH 6.0 (g/sqm): 0 - to neutralise Al (g/sqm):

Gypsum Application Rate

- to achieve 67.5% exch. Ca (g/sqm): 0 The CGAR is corrected for a soil depth of 100mm and any Lime addition to achieve pH 6.0.

Physical Description

Texture: Sandy Clay Loam Colour: Estimated clay content: 20 - 30% Size: Fine (1 - 10mm) Gravel content: Gravelly Aggregate strength: Pedal - Moderate Structural unit: Crumb Potential infiltration rate: Moderate Permeability (mm/hr): 20 - 60 Calculated EC_{SE} (dS/m): 0.4

- Non-saline. Salinity effects on plants are mostly negligible.

Organic Carbon (OC%)[†]: **0.5 – Very low**

Organic Matter (OM%): 1.1

Additional comments:

Consultant: Chantal Milner

Authorised Signatory: Simon Leake

Date Report Generated 16/10/2017

Linterlo

METHOD REFERENCES: ME I HOU KEI LINESSEN (1992) 4A1, pt (1:5 Hg.) Fayment & Higginson (1992) 4A1, pt (1:5 CaCls.) - Rayment & Higginson (1992) 4B1, EC (1:5) - Rayment & Higginson (1992) 3A1, Chioride - Rayment & Higginson (1992) 5A2, Nitrate - Rayment & Higginson (1992) 7B1 Aluminium - SESI. n-house Aluminium - SESI. n-house Aluminium - SESI. n-house Berger (1992) 7B1 Aluminium - SESI. n-house SESI. n-house (1992) 7B2 - Adams-Evans (199

Mehlich 3 - Multi-nutrient Extractant

Pennant Hills NSW 1715

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 Thornleigh NSW 2120 1300 64 46 89 Fax: PO Box 357 info@sesl.com.au Em:

Web:

www sest com au

Batch N°: 45188 Sample N°: 3 Date Received: 3/10/17 Report Status: O Draft Final

Mailing Address:

Client Name: **Environmental Investigation Services**

Project Name: Soil assessment for School Oval

Client Contact: Rob Muller Client Job N°:

SESL Quote N°: Q7388 Sample Name: BH7 0.0-0.2

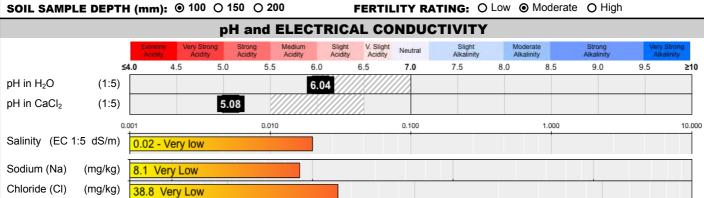
Address: PO Box 976

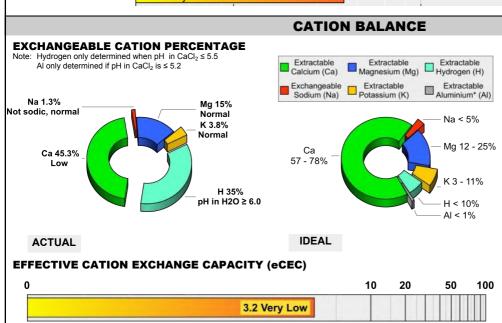
Client Order N°:

Description: Soil

NORTH RYDE BC NSW 1670

Test Type: FSC, OM WB, BSP


RECOMMENDATIONS


Sample 'BH7 0.0-0.2' was tested to determine its use in a school oval. The soil is strongly acidic in CaCl2 with desirably low salinity, sodium and chloride levels. The cation exchange is highly acidic. The eCEC is low indicating poor nutrient retention. All nutrients need boosting aside from phosphorus. Organic matter = 3.1% (moderate).

The soil is a sandy loam with a weak crumb structure and rapid permeability. This soil is the best choice out of the 3 samples for use in a school oval. This soil could be used as the capping layer for the other 2 soils.

Amendment Strategy

We recommend adding a multipurpose NPK+TE fertliser that has low P. A small amount of lime at just 50g/m2 will reduce the exchangeable acidity.

CAT	ION R	ATIOS								
Ratio	1	Result	Tar	get Rar	nge					
Ca:M	g	3	4	.1 – 6.0)					
Comment: Calcium low										
Mg:K		4	2	2.6 – 5.0)					
Comment: Balanced										
K/(Ca+Mg) 0.06 < 0.07										
Comr	ment: A	cceptat	ole							
K:Na		3		N/A						
Sodi	um Abs	orption	n Ratio:	D.N.T.						
EXC	HANGE	ABLE CA	ATIONS	cmol(+)	/kg					
Na:	K:	Ca:	Mg:	H:	AI:					
0.04	0.12	1.45	0.48	1.12	0.00					
SOLUBLE CATIONS cmol(+)/kg										
Na:	K	:	Ca:	Mg:						

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 Thornleigh NSW 2120 1300 64 46 89 Fax:

Mailing Address: PO Box 357 info@sesl.com.au Em: Pennant Hills NSW 1715 Web: www.sesl.com.au

Batch N°: 45188 Sample N°: 3 Date Received: 3/10/17

		PL	ANT A	AILABLE	NUTRIENT	S			
Major Nutrients	Result (mg/kg)	Very Low	Low	Marginal	Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustment (g/sqm)
Nitrate-N (NO ₃)	2.2						0.3	4	3.7
Phosphate-P (PO ₄)	121						16.1	8.4	Drawdown
Potassium (K) †	47.5						6.3	23.7	17.4
Sulphate-S (SO ₄)	<3.20						0.4	9	8.6
Calcium (Ca) †	291						38.7	168.5	129.8
Magnesium (Mg) †	58						7.7	17.8	10.1
Iron (Fe)	173						23	73.4	50.4
Manganese (Mn) †	3.5						0.5	5.9	5.4
Zinc (Zn) †	5.7						0.8	0.7	Drawdown
Copper (Cu)	<0.64			//			0.1	0.8	0.7
Boron (B) †	<0.1						0	0.4	0.4

Explanation of graph ranges:

Very Low Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.

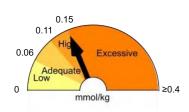
Low Potential "hidden hunger", or sub-clinic deficiency. Potential response to nutrient addition is 60 to 90% Marginal

Supply of this nutrient is barely adequate for the plant, and build-up is still recommended. otential response to itrient addition is 30 60%.

Adequate

Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to

Hiah


The level is excessive and may be detrimental to plant growth (i.e. phytotoxic) and may contribute to pollution of ground and surface waters. Drawdown is recommended. Potential response to nutrient

NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the Adequate band, which maximises growthlyield, and economic efficiency, and minimises impact on the

Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed

g/sqm measurements are based on soil bulk density of 1.33 tonne/m³ and selected soil depth.

Phosphorus Saturation Index

0.15

Excessive. Exceeds environmental threshold. Implement improved P management to reduce potential for nonpoint P pollution.

Exchangeable Acidity

Adams-Evans Buffer pH (BpH): 7.8 Sum of Base Cations (meq/100g⁻¹): 2.1 Eff. Cation Exch. Capacity (eCEC): 3.2 Base Saturation (%): 65.63 Exchangeable Acidity (meq/100g⁻¹): Exchangeable Acidity (%):

Lime Application Rate

- to achieve pH 6.0 (g/sqm): 0 - to neutralise Al (g/sqm): 0

Gypsum Application Rate

- to achieve 67.5% exch. Ca (g/sqm): 81 The CGAR is corrected for a soil depth of 100mm and any Lime addition to achieve pH 6.0.

Physical Description

Texture: Sandy Loam Colour: Estimated clay content: 10 - 20% Size: Fine (1 - 10mm) Gravel content: Not gravelly Aggregate strength: Pedal - Weak Structural unit: Crumb Potential infiltration rate: Rapid Permeability (mm/hr):

>120

0.3

Calculated EC_{SE} (dS/m): - Non-saline. Salinity effects on plants are mostly negligible.

Organic Carbon (OC%)†: 1.4 - Moderate

Organic Matter (OM%): 3.1 Additional comments:

Date Report Generated 16/10/2017 Authorised Signatory: Simon Leake

Consultant: Chantal Milner

Linterlo

METHOD REFERENCES:

ME I HOU KEI LINESSEN (1992) 4A1, pt (1:5 Hg.) Fayment & Higginson (1992) 4A1, pt (1:5 CaCls.) - Rayment & Higginson (1992) 4B1, EC (1:5) - Rayment & Higginson (1992) 3A1, Chioride - Rayment & Higginson (1992) 5A2, Nitrate - Rayment & Higginson (1992) 7B1 Aluminium - SESI. n-house Aluminium - SESI. n-house Aluminium - SESI. n-house Berger (1992) 7B1 Aluminium - SESI. n-house SESI. n-house (1992) 7B2 - Adams-Evans (199

Appendix F: UCL Calculations

	А	В	С	D	Е	F	G	Н	I	J	К	L
1					UCL Statis	stics for Unc	ensored Full D	Data Sets				
2		Llaav Cala	cted Options									
3	Dat	e/Time of C	'	23/10/2017	8·02·50 AM							
4	Dati	e/ Time of C	From File	WorkSheet.								
5		Fu	Ill Precision	OFF	A13							
6		Confidence		95%								
7 8		f Bootstrap		2000								
9		•	<u>'</u>									
10												
-	Arsenic											
12												
13						General	Statistics					
14			Total	Number of C	Observations	14					Observations	4
15									Numbe	r of Missing (Observations	0
16					Minimum						Mean	4.786
17					Maximum						Median	4
18					SD					Std. E	Error of Mean	0.318
19				Coefficient	t of Variation	0.248					Skewness	1.762
20						Na 1 4	20E Ta - 1					
21				hapiro Wilk 1	Foot Ct-ti-ti		GOF Test		Chanira M	ilk GOF Tes	•	
22				hapiro Wilk C				Data M	ot Normal at			
23			3/03		Test Statistic			Data N		GOF Test	ilce Level	
24				% Lilliefors C				Data No	ot Normal at		nce I evel	
25 26				70 Emiliororo			5% Significanc		ot Horman at	o 70 Olgriilloai	100 20101	
27												
28					As	suming Nor	mal Distributio	n				
29			95% No	rmal UCL					6 UCLs (Adju	sted for Ske	ewness)	
30				95% Stu	dent's-t UCL	5.348			95% Adjuste	ed-CLT UCL	(Chen-1995)	5.468
31									95% Modifi	ed-t UCL (Jo	hnson-1978)	5.373
32												
33						Gamma (GOF Test					
34				A-D T	Test Statistic	1.559		Ande	rson-Darling	Gamma GC	OF Test	
35				5% A-D C	Critical Value	0.734	Dat				nificance Lev	el
36					Test Statistic				grov-Smirno			
37					Critical Value					ed at 5% Sig	nificance Lev	el
38				Da	ata Not Gam	ma Distribute	ed at 5% Signi	ificance L	evel			
39												
40					k bot /MI =\		Statistics			otor/bir	rrooted MIC	16.49
41				The	k hat (MLE) ta hat (MLE)						rrected MLE)	0.29
42					ra nat (MLE) nu hat (MLE)				rneta	`	as corrected)	
43			Į/II	r E Mean (bia							as corrected)	1.179
44			1411						Approximate		Value (0.05)	
45 46			Adius	sted Level of	Significance	0.0312					Square Value	
46					J -=30					,	,	
48					As	suming Garr	ıma Distributio	n				
49	9!	5% Approxir	mate Gamma	UCL (use w					djusted Gamı	ma UCL (use	e when n<50)	5.432
50										·	<u> </u>	
51						Lognorma	I GOF Test					
52			S	hapiro Wilk	Test Statistic	0.75		Sha	piro Wilk Log	gnormal GO	F Test	
53			5% S	hapiro Wilk C	Critical Value	0.874		Data Not	Lognormal a	t 5% Signific	ance Level	
54				Lilliefors	Test Statistic	0.333		Li	lliefors Logn	ormal GOF	Гest	
55			5	% Lilliefors C					Lognormal a	t 5% Signific	ance Level	
56					Data Not I	ognormal at	t 5% Significar	nce Level				
57												

	Α	В	С	D	E	F	G	Н	I	J	K	L
58						Lognorma	l Statistics					
59			ľ	Minimum of L	ogged Data	1.386				Mean of	logged Data	1.542
60			M	laximum of L	ogged Data	2.079				SD of	logged Data	0.219
61												
62					Assı	uming Logno	rmal Distrib	ution				
63					95% H-UCL	5.347			90%	Chebyshev (I	MVUE) UCL	5.618
64			95% (Chebyshev (MVUE) UCL	6			97.5%	Chebyshev (I	MVUE) UCL	6.529
65			99% (Chebyshev (MVUE) UCL	7.569						
66												
67					Nonparame	etric Distribu	tion Free UC	L Statistics				
68					Data do not f	ollow a Disc	ernible Distr	ibution (0.05	5)			
69												
70					Nonpa	rametric Dis	tribution Free	UCLs				
71				95	% CLT UCL	5.308				95% Ja	ckknife UCL	5.348
72			95%	Standard Bo	otstrap UCL	N/A				95% Boo	tstrap-t UCL	N/A
73			9	5% Hall's Bo	otstrap UCL	N/A			95%	Percentile Bo	otstrap UCL	N/A
74			(95% BCA Bo	otstrap UCL	N/A						
75			90% Ch	ebyshev(Me	an, Sd) UCL	5.738			95% Ch	ebyshev(Me	an, Sd) UCL	6.17
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	6.769			99% Ch	ebyshev(Me	an, Sd) UCL	7.946
77												
78						Suggested	UCL to Use					
79				95% Stu	dent's-t UCL	5.348				or 95% Mo	dified-t UCL	5.373
80												
81	N	lote: Sugges	tions regardir	ng the select	ion of a 95%	UCL are pro	ovided to hel	p the user to	select the r	nost appropri	ate 95% UC	L
82	These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002)											
83			and Singh	and Singh (2	003). Howev	er, simulatio	ns results wi	Il not cover a	II Real Worl	d data sets.		
84				For ad	ditional insigl	nt the user m	ay want to co	onsult a stati	stician.			
85												

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statis	stics for Unc	ensored Full D	ata Sets				
2				I								
3	Dat		ected Options	22/10/2017	0.04.10 AM							
4	Dati	e/Time of C	From File	23/10/2017 8 WorkSheet.x								
5		E.,	Ill Precision	OFF	XIS							
6		Confidence		95%								
7 8		f Bootstrap		2000								
9												
10												
11	Chromium											
12												
13						General	Statistics					
14			Total	Number of O	bservations	14			Numbe	r of Distinct	Observations	7
15									Numbe	r of Missing	Observations	0
16					Minimum	6					Mean	10.57
17					Maximum	19					Median	9
18					SD	4.237				Std. I	Error of Mean	1.133
19				Coefficient	of Variation	0.401					Skewness	0.73
20												
21				homine Marin =	Talak Ot 11 11		GOF Test		Observe Mar	IL COT T		
22				hapiro Wilk T		0.866		D-t- N	•	lk GOF Tes		
23			5% S	hapiro Wilk C	est Statistic	0.874 0.229		Data No	ot Normal at	GOF Test	nce Level	
24			5	Lilliefors C		0.229		Data ann	ear Normal a		eance Level	
25							rmal at 5% Sig			it 3 % Sigrillic	ance Level	
26				Data	арреаг дрр	TOXIIIIate 140	illiai at 576 Oig	Jillicance	Level			
27 28					As	sumina Nori	mal Distribution	n				
29			95% No	rmal UCL					6 UCLs (Adju	sted for Ske	ewness)	
30					dent's-t UCL	12.58			` .		(Chen-1995)	12.67
31											hnson-1978)	12.61
32										`	,	
33						Gamma	GOF Test					
34				A-D T	est Statistic	0.796		Ande	rson-Darling	Gamma GO	OF Test	
35				5% A-D C	ritical Value	0.736	Dat	a Not Gan	nma Distribut	ed at 5% Sig	nificance Lev	el
36				K-S T	est Statistic	0.246		Kolmo	grov-Smirno	ff Gamma G	OF Test	
37				5% K-S C	ritical Value	0.229	Dat	a Not Gan	nma Distribut	ed at 5% Siç	gnificance Lev	el
38				Da	ta Not Gam	ma Distribut	ed at 5% Signi	ficance Le	evel			
39												
40							Statistics					
41					k hat (MLE)	7.205					rrected MLE)	5.709
42					a hat (MLE)	1.467			Theta	`	rrected MLE)	1.852
43					u hat (MLE)						as corrected)	159.8
44			MI	E Mean (bia	s corrected)	10.57			<u> </u>	· .	as corrected)	4.425
45					O::r	0.0040					Value (0.05)	131.6
46			Adjus	sted Level of	oigniticance	0.0312			Α	ujusted Chi S	Square Value	128.2
47					۸۵	sumina Co-	ıma Dietributio	ın				
48	O	5% Approvi	mate Gamma	HCL (uso w		suming Gam 12.84	nma Distributio		diusted Com	ma LICI /ucc	e when n<50)	13.18
49	9;	o 10 whhi oxii	mate Gallillid	OCL (use Wi	ien n/=50))	12.04		33 /0 A	ujusicu Gdilli	na OCL (use	wiieii ii>00)	13.10
50						Lognorma	I GOF Test					
51			.9	hapiro Wilk T	est Statistic	0.885	. 30. 100	Sha	piro Wilk Log	normal GO	F Test	
52 53				hapiro Wilk C		0.874	Γ		-	=	ficance Level	
54					est Statistic	0.24			lliefors Logn	-		
55			5	% Lilliefors C		0.237			Lognormal a			
56							normal at 5% S		•	<u> </u>	-	
57												
٠,												

	Α	В	С	D	E	F	G	Н	I	J	K	L
58						Lognorma	l Statistics					
59			ľ	Minimum of L	ogged Data	1.792				Mean of	logged Data	2.287
60			M	laximum of L	ogged Data	2.944				SD of	logged Data	0.386
61												
62					Assı	ıming Logno	ormal Distribu	ıtion				
63					95% H-UCL	13.1			90%	Chebyshev (MVUE) UCL	13.88
64			95% (Chebyshev (I	MVUE) UCL	15.38			97.5%	Chebyshev (MVUE) UCL	17.47
65			99% (Chebyshev (I	MVUE) UCL	21.58						
66												
67					Nonparame	tric Distribu	tion Free UC	L Statistics				
68				Data appeai	to follow a	Discernible	Distribution a	at 5% Signif	icance Leve	el		
69												
70					Nonpai	ametric Dis	tribution Free	UCLs				
71				95	% CLT UCL	12.43				95% Ja	ckknife UCL	12.58
72			95%	Standard Bo	otstrap UCL	12.36					tstrap-t UCL	12.88
73			9	5% Hall's Bo	otstrap UCL	12.47			95%	Percentile Bo	otstrap UCL	12.29
74			(95% BCA Bo	otstrap UCL	12.71						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	13.97			95% Ch	nebyshev(Me	an, Sd) UCL	15.51
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	17.64			99% Cł	nebyshev(Me	an, Sd) UCL	21.84
77												
78						Suggested	UCL to Use					
79				95% Stud	dent's-t UCL	12.58						
80												
81	N	lote: Sugges	tions regardir	ng the select	ion of a 95%	UCL are pro	ovided to help	the user to	select the r	nost appropr	iate 95% UCI	
82		These reco	mmendations	s are based	upon the res	ults of the si	mulation stud	dies summar	ized in Sing	h, Singh, and	d laci (2002)	
83			and Singh	and Singh (2	003). Howev	er, simulatio	ns results wil	ll not cover a	II Real Worl	d data sets.		
84				For ad	ditional insigh	nt the user m	nay want to co	onsult a stati	stician.			
85												

1	Α	В	С	D	Е	F	G	Н	I	J	К	L
1					UCL Statis	stics for Unc	ensored Full D	ata Sets				
2		Hoor Colo	cted Options									
3	Dat	e/Time of Co	<u> </u>	23/10/2017	8.05.36 AM							
4	Dati	e/ Tillle of Co	From File	WorkSheet.								
5		Fu	Il Precision	OFF								
6		Confidence		95%								
7 8		f Bootstrap		2000								
9		<u> </u>	•									
10												
-	Lead											
12												
13						General	Statistics					
14			Total	Number of 0	Observations	14			Numbe	r of Distinct	Observations	13
15									Numbe	r of Missing	Observations	0
16					Minimum						Mean	25.43
17					Maximum						Median	19.5
18					SD	18.88				Std. E	Error of Mean	5.047
19				Coefficien	t of Variation	0.743					Skewness	1.605
20						NI 1 2	OOF T4					
21				honire Will	Toot Ctat'-4		GOF Test		Chanira M	ᆘᄼᄼ	•	
22					Test Statistic Critical Value			Data M	Snapiro wi ot Normal at	lk GOF Tes		
23			5% 5		Test Statistic			Data No		GOF Test	ice Levei	
24			5		Critical Value			Data ann	ear Normal a		ance Level	
25							rmal at 5% Sig			t 0 70 Olgriille	ance Level	
26 27					орросі / фр	TOXIIII GIO TIO	mar at 0 70 oig	,	20101			
28					As	suming Nori	mal Distributior	า				
29			95% No	rmal UCL					6 UCLs (Adju	sted for Ske	ewness)	
30				95% Stu	dent's-t UCL	34.37			95% Adjuste	ed-CLT UCL	(Chen-1995)	36.04
31									95% Modifi	ed-t UCL (Jo	hnson-1978)	34.73
32												
33						Gamma (GOF Test					
34				A-D	Test Statistic	0.41		Ande	rson-Darling	Gamma GC	OF Test	
35				5% A-D (Critical Value	0.744	Detected of	data appe	ar Gamma D	istributed at	5% Significan	ce Level
36				K-S	Test Statistic	****			grov-Smirno			
37					Critical Value					istributed at	5% Significan	ce Level
38				Detected	l data appea	r Gamma Di	stributed at 5%	Significa	ance Level			
39							D					
40					1. h / A *! = `	Gamma	Statistics					0.04
41				Tb -	k hat (MLE)						rrected MLE)	2.01
42					eta hat (MLE)	10.18			ı heta		rrected MLE)	12.65
43			K A I		nu hat (MLE) as corrected)	69.91 25.43					as corrected) as corrected)	56.27 17.94
44			IVII	c iviean (Dia	as corrected)	25.43			Annrovimete	·	Value (0.05)	40.03
45			Δdina	sted Level of	Significance	0.0312					Square Value	38.21
46			Aujus	LEVEI UI	Significance	3.0312				ajuoteu OIII (Jaure value	
47					As	sumina Gam	ıma Distributio	n				
48 49	9!	5% Approxir	mate Gamma	UCL (use w		35.75			djusted Gamı	ma UCL (use	when n<50)	37.44
50		11		(//					(-30		
51						Lognorma	IGOF Test					
52			S	Shapiro Wilk	Test Statistic			Sha	piro Wilk Log	normal GO	F Test	
53				•	Critical Value	0.874	D		-	=	icance Level	
54				Lilliefors	Test Statistic	0.114		Li	lliefors Logn	ormal GOF	Гest	
55			5	5% Lilliefors (Critical Value	0.237	D	ata appea	ar Lognormal	at 5% Signif	icance Level	
56					Data appea	r Lognormal	at 5% Significa	ance Leve	el			
57												

	Α	В	С	D	E	F	G	Н	I	J	K	L
58					·	Lognorma	l Statistics					
59			ı	Vinimum of L	ogged Data	2.079				Mean of	logged Data	3.022
60			N	laximum of L	ogged Data	4.29				SD of	logged Data	0.658
61												
62					Assı	ıming Logno	rmal Distribu	ıtion				
63					95% H-UCL	38.74			90%	Chebyshev (MVUE) UCL	38.87
64			95% (Chebyshev (I	MVUE) UCL	45.12			97.5%	Chebyshev (MVUE) UCL	53.81
65			99% (Chebyshev (I	MVUE) UCL	70.87						
66												
67					Nonparame	tric Distribu	tion Free UC	L Statistics				
68				Data appear	to follow a	Discernible	Distribution a	at 5% Signif	icance Leve	el		
69												
70					Nonpar	ametric Dis	tribution Free	UCLs				
71				95	% CLT UCL	33.73				95% Ja	ckknife UCL	34.37
72			95%	Standard Bo	otstrap UCL	33.5				95% Boo	tstrap-t UCL	40.16
73			9	5% Hall's Bo	otstrap UCL	66.06			95%	Percentile Bo	otstrap UCL	34
74			Ç	95% BCA Bo	otstrap UCL	36.14						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	40.57			95% Ch	nebyshev(Me	an, Sd) UCL	47.43
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	56.95			99% Cł	nebyshev(Me	an, Sd) UCL	75.64
77												
78						Suggested	UCL to Use					
79				95% Stud	dent's-t UCL	34.37						
80												
81	N	lote: Sugges	tions regardin	ng the select	ion of a 95%	UCL are pro	ovided to help	the user to	select the r	nost appropr	iate 95% UC	L
82		These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002)										
83			and Singh	and Singh (2	003). Howev	er, simulatio	ns results wil	ll not cover a	II Real Worl	d data sets.		
84				For add	ditional insigh	nt the user m	ay want to co	onsult a stati	stician.			
85												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Stati	stics for Unc	ensored Full I	Data Sets				
2		Lleer Cele	cted Options	T								
3	Dat	e/Time of C			8:06:53 AM							
4	Dati	e/ Tillle of C		WorkSheet								
5		Fu		OFF								
6		Confidence		95%								
7 8		f Bootstrap		2000								
9		•	•									
10												
-	Nickel											
12												
13						General	Statistics					
14			Total	Number of (Observations	14			Numbe	r of Distinct	Observations	5
15									Numbe	r of Missing	Observations	0
16					Minimum	1					Mean	2.786
17					Maximum	7					Median	2
18					SD					Std. I	Error of Mean	0.395
19				Coefficier	nt of Variation	0.53					Skewness	1.932
20												
21							GOF Test					
22					Test Statistic				-	ilk GOF Tes		
23			5% S		Critical Value			Data N	ot Normal at		nce Level	
24					Test Statistic Critical Value			Data N		GOF Test	naa Laval	
25			5	5% LIMETORS			5% Significand		ot Normal at	5% Signilica	nce Level	
26					Data No	n Normai at t	o% Significant	ce Level				
27					A	ssuming Nor	mal Distributio	nn .				
28			95% No	ormal UCL		ssaming Hon	mai Distribute		6 UCLs (Adju	sted for Ske	ewness)	
29 30			0070110		ıdent's-t UCL	3.485		007	` •		(Chen-1995)	3.653
31						0.100					ohnson-1978)	3.519
32												
33						Gamma	GOF Test					
34				A-D	Test Statistic	0.957		Ande	rson-Darling	Gamma GO	OF Test	
35				5% A-D	Critical Value	0.738	Da	ta Not Gar	nma Distribut	ted at 5% Sig	gnificance Lev	'el
36				K-S	Test Statistic	0.277		Kolmo	grov-Smirno	ff Gamma G	OF Test	
37				5% K-S	Critical Value	0.229	Da	ta Not Gar	nma Distribut	ted at 5% Sig	gnificance Lev	'el
38				D	ata Not Gam	ma Distribut	ed at 5% Sign	nificance L	evel			
39												
40							Statistics					
41					k hat (MLE)						rrected MLE)	
42				The	eta hat (MLE)				Theta	`	rrected MLE)	0.715
43					nu hat (MLE)						ias corrected)	
44			ML	LE Mean (bi	as corrected)	2.786					ias corrected)	1.411
45											e Value (0.05)	
46			Adjus	sted Level of	Significance	0.0312			A	djusted Chi	Square Value	83.32
47							D: : " ·					
48	^-	E0/ A	mote O==	LICE to			nma Distribution		diugtod O	ma 1101 /	o whom = :50\	2.040
49	9!	o% Approxi	mate Gamma	OCL (use v	vnen n>=50))	3.534		95% A	ujusted Gami	ma UCL (use	e when n<50)	3.649
50						Lognorma	I GOE Toot					
51				hanira Will-	Tact Statical	-	I GOF Test	Ch-	niro Wilk Lo	normal CC	F Teet	
52				•	Test Statistic				piro Wilk Log	_		
53			5% S		Critical Value Test Statistic				ar Lognormal Iliefors Logn	_	ficance Level	
54			E		rest Statistic Critical Value				Lognormal a			
55			5				normal at 5%		•	ico/o oignitio	ance Level	
56				Dala 8	Appeal Appli	ozimate LUGI	ormai at 0%	oignilleall	OO FEACI			
57												

	Α	В	С	D	E	F	G	Н	I	J	K	L
58						Lognorma	l Statistics					
59			ı	Minimum of L	ogged Data	0				Mean of	logged Data	0.919
60			N	laximum of L	ogged Data	1.946				SD of	logged Data	0.463
61												
62					Assı	uming Logno	rmal Distribu	ution				
63					95% H-UCL	3.612			90%	Chebyshev (MVUE) UCL	3.821
64			95% (Chebyshev (I	MVUE) UCL	4.298			97.5%	Chebyshev (MVUE) UCL	4.96
65			99% (Chebyshev (I	MVUE) UCL	6.26						
66												
67					Nonparame	etric Distribu	tion Free UC	L Statistics				
68				Data appeai	to follow a	Discernible	Distribution a	at 5% Signif	icance Leve	el		
69												
70					Nonpa	rametric Dis	tribution Free	UCLs				
71				95	% CLT UCL	3.435				95% Ja	ckknife UCL	3.485
72			95%	Standard Bo	otstrap UCL	3.42				95% Boo	tstrap-t UCL	3.993
73			9	5% Hall's Bo	otstrap UCL	6.427			95%	Percentile Bo	otstrap UCL	3.429
74			(95% BCA Bo	otstrap UCL	3.571						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	3.97			95% Ch	nebyshev(Me	an, Sd) UCL	4.506
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	5.251			99% Cł	nebyshev(Me	an, Sd) UCL	6.713
77												
78						Suggested	UCL to Use					
79				95% Stud	dent's-t UCL	3.485				or 95% Mo	odified-t UCL	3.519
80												
81	N	ote: Sugges	tions regardir	ng the select	ion of a 95%	UCL are pro	ovided to hel	p the user to	select the r	nost appropr	iate 95% UC	L.
82		These reco	mmendations	s are based	upon the res	ults of the si	mulation stud	dies summar	rized in Sing	h, Singh, and	d laci (2002)	
83			and Singh	and Singh (2	003). Howev	er, simulatio	ns results wi	Il not cover a	II Real Worl	d data sets.		
84				For ad	ditional insigl	ht the user m	nay want to co	onsult a stati	stician.			
85												

1	А	В	С	D	E	F	G	Н	l	J	K	L
1					UCL Statis	stics for Unc	ensored Full Da	ata Sets				
2		Lloor Colo	cted Options									
3	Dat	e/Time of C	<u>'</u>	23/10/2017	8.00.26 AM							
4	Dati	e/ Tillle of C	From File	WorkSheet.								
5		Fu	Ill Precision	OFF	AI3							
6 7		Confidence		95%								
8		f Bootstrap		2000								
9		·	<u> </u>									
10												
11	Zinc											
12												
13						General	Statistics					
14			Total	Number of C	bservations	14					Observations	14
15									Numbe	r of Missing (Observations	0
16					Minimum	21					Mean	82
17					Maximum						Median	50
18					SD	64.51				Std. E	Error of Mean	17.24
19				Coefficient	t of Variation	0.787					Skewness	1.366
20						NI= 1 2	20E T					
21					F4 O4-4:-4:-		GOF Test		Chamira W			
22				hapiro Wilk T		0.786 0.874		Doto Na	•	lk GOF Test		
23			5% 5	hapiro Wilk C	Test Statistic	0.874		Data No	ot Normal at	GOF Test	ice Levei	
24			5	% Lilliefors C		0.239		Data No	ot Normal at		nce I evel	
25				70 Elliololo			5% Significance		ot Homman at V	o 70 Olgriilledi	TICC ECVCI	
26 27					Data No.	Troimar at a	770 Gigilliouniou	20101				
28					As	suming Nori	mal Distribution	1				
29			95% No	rmal UCL		<u> </u>			ն UCLs (Adju	sted for Ske	ewness)	
30				95% Stu	dent's-t UCL	112.5					(Chen-1995)	117.1
31									95% Modifi	ed-t UCL (Jo	ohnson-1978)	113.6
32												
33						Gamma (GOF Test					
34				A-D 1	Test Statistic	0.751		Ande	rson-Darling	Gamma GC	OF Test	
35				5% A-D C	Critical Value	0.745	Data	Not Gan	nma Distribut	ed at 5% Sig	gnificance Lev	el
36				K-S 1	Test Statistic	0.233		Kolmo	grov-Smirno	ff Gamma G	OF Test	
37				5% K-S C	Critical Value	0.231	Data	Not Gan	nma Distribut	ed at 5% Sig	gnificance Lev	el
38				Da	ita Not Gami	ma Distribute	ed at 5% Signifi	icance Le	evel			
39												
40						Gamma	Statistics					
41					k hat (MLE)	2.194					rrected MLE)	1.772
42					ta hat (MLE)	37.37			Theta	`	rrected MLE)	46.29
43			-		nu hat (MLE)	61.44					as corrected)	49.61
44			MI	.E Mean (bia	s corrected)	82			A :		as corrected)	61.61
45			v i.	todle	Ciarifi	0.0010					Value (0.05)	34.44
46			Adjus	sted Level of	oignificance	0.0312			A	ujustea Chi S	Square Value	32.76
47					Δο	sumina Cam	ıma Distributior	<u> </u>				
48	QI	5% Annrovi	mate Gamma	UCL (usa w		118.1	iiiia DistributiOl		diusted Gami	ma UCL (use	e when n<50)	124.2
49	3.	o 70 7 Approxii	ato Gaillilla	JOE (USE W		110.1		55 /0 A	_{aj} asisa Gailli	a JOL (use	, whom 11500)	127.2
50						Lognorma	IGOF Test					
51 52			S	hapiro Wilk 1	Test Statistic	0.931		Sha	piro Wilk Log	normal GOI	F Test	
53				hapiro Wilk C		0.874	Da			-	ficance Level	
54					Test Statistic	0.2			lliefors Logn	_		
55			5	% Lilliefors C		0.237	Da				ficance Level	
56							at 5% Significa		_			
57					• • •	<u>-</u>						
J,												

	Α	В	С	D	Е	F	G	Н	I	J	К	L
58						Lognorma	l Statistics					
59			ı	Minimum of L	ogged Data	3.045				Mean of	logged Data	4.162
60			N	laximum of L	ogged Data	5.394				SD of	logged Data	0.703
61												
62					Assı		rmal Distribu	ution				
63					95% H-UCL	129.7			90%	Chebyshev (MVUE) UCL	128.1
64			95% (Chebyshev (I	MVUE) UCL	149.7			97.5%	Chebyshev (MVUE) UCL	179.7
65			99% (Chebyshev (I	MVUE) UCL	238.6						
66												
67					•		tion Free UC					
68				Data appear	to follow a	Discernible	Distribution a	at 5% Signif	icance Leve) 		
69												
70					•		tribution Free	UCLs				
71					% CLT UCL						ckknife UCL	112.5
72				Standard Bo		109.1					tstrap-t UCL	131.8
73				5% Hall's Bo	•	113.5			95%	Percentile Bo	otstrap UCL	110.2
74				95% BCA Bo	•	115.8						
75				ebyshev(Mea	. ,	133.7				nebyshev(Me	. ,	157.1
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	189.7			99% Ch	ebyshev(Me	an, Sd) UCL	253.5
77												
78					050/ 111101		UCL to Use					
79					95% H-UCL	129.7						
80			e e			1101					050/ 1101	
81	N					<u> </u>	<u> </u>	•			iate 95% UCL	
82		These reco	mmendations		<u> </u>						1 laci (2002)	
83			and Singn a				ns results wi			d data sets.		
84				For ad-	aitional insigi	nt the user m	nay want to co	onsuit a stati	stician.			
85			Drol	Cl. compute	o and auto	to U statisti	c based UCL	a for histori	ool roosens	only		
86		II statistis s		<u> </u>	<u> </u>						ninal Ovida	
87		n-statistic C	often results		`		he use of H-		<u> </u>		micai Guide.	
88	Hen	of nonnara									mma distribut	tion
89	USE	or nonparar	medic medio	us are preis	area to com	pule OCL90	ioi skeweu	uald SelS W	mich do fioi	TOHOW a gal	ililia uisiiiDul	JUIT.
90												

	А	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Stati	stics for Data	Sets with N	Ion-Detects				
2		Liser Sele	cted Options									
3	Date	e/Time of C	•	23/10/2017	8·09·03 AM							
5	Dat	0, 1,1110 01 0	From File	WorkSheet.								
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10	Total PAHs											
11												
12							Statistics					
13			Total	Number of C					Numb		Observations	
14			NI.		er of Detects	-			Niconal		f Non-Detects	
15			NU	ımber of Dis					Numi		t Non-Detects	
16					mum Detec						m Non-Detec m Non-Detec	
17					nce Detects						m Non-Detects t Non-Detects	
18					lean Detects					i eiceii	SD Detects	
19 20					dian Detects						CV Detects	
21					ness Detects					Ku	rtosis Detects	
22				Mean of Log	ged Detects	-1.278				SD of Lo	gged Detects	1.1
23						1						
24					Nori	nal GOF Tes	t on Detects	s Only				
25			S	hapiro Wilk	Γest Statistic	0.748			Shapiro V	/ilk GOF Tes	st	
26			5% S	hapiro Wilk (Critical Value	0.762		Detected Da	ata Not Norn	nal at 5% Sig	nificance Lev	el
27				Lilliefors	Γest Statistic	0.344			Lilliefor	s GOF Test		
28			5	% Lilliefors 0	Critical Value	0.396	D	etected Data	a appear No	rmal at 5% S	ignificance Le	vel
29				Detected	Data appea	r Approximat	te Normal at	5% Signific	cance Level			
30												
31			Kaplan-N	leier (KM) S		ng Normal C	Critical Value	es and othe	r Nonparam			0.405
32					Mear						Error of Mear	
33				05%	SC KM (t) UCL				05% KM		M (BCA) UCL	
34					KM (z) UCL				95 /6 KIVI (•	otstrap t UCI	
35			c	0% KM Che							ebyshev UCI	
36 37				.5% KM Che	•						ebyshev UCI	
38					.,							
39				G	amma GOF	Tests on De	etected Obs	ervations O	nly			
40				A-D	Γest Statistic	0.416		-	Anderson-D	arling GOF 1	est	
41				5% A-D (Critical Value	0.69	Detecte	d data appe	ar Gamma I	Distributed at	5% Significa	nce Level
42				K-S	Γest Statistic	0.231			Kolmogrov	-Smirnoff GC)F	
43					Critical Value					Distributed at	5% Significa	nce Level
44				Detected	data appea	r Gamma Di	stributed at	5% Signification	ance Level			
45												
46						Statistics or	Detected D	Data Only				0 = 0=
47				-	k hat (MLE)					`	orrected MLE	
48					ta hat (MLE)				I heta		orrected MLE	
49			Į AI	r E Mean (bia	nu hat (MLE)						ias corrected ias corrected	
50			IVIL	L IVIEATT (DIS	is corrected)	0.40				IVILE SU (D	ias corrected	0.0
51 52					Gamr	na Kaplan-M	eier (KM) St	atistics				
53					k hat (KM)		(, 5.				nu hat (KM	8.833
54		Aı	pproximate Cl	hi Square Va					Adjusted	Chi Square V	/alue (8.83, β	
55	95%		proximate KM	•				95% Gamr	•	•	e when n<50	
56		·		· ·						•		
57				G	amma ROS	Statistics us	sing Imputed	d Non-Dete	cts			

	A B C D E	F	G H I J K	L								
58	GROS may not be used when data se	t has > 50%	NDs with many tied observations at multiple DLs									
59	GROS may not be used when kstar of detected data is small such as < 0.1											
60	For such situations, GROS method tends to yield inflated values of UCLs and BTVs											
61	For gamma distributed detected data, BTVs and UCLs may be computed using garnma distribution on KM estimates											
62	Minimum 0.01 Mean											
63	Maximum	1.4	Median	0.01								
64	SD	0.374	CV	2.194								
65	k hat (MLE)	0.399	k star (bias corrected MLE)	0.361 0.473								
66	Theta hat (MLE) 0.428 Theta star (bias corrected MLE) nu hat (MLE) 11.18 nu star (bias corrected)											
67	nu hat (MLE)	11.18	nu star (bias corrected)	10.12								
68	MLE Mean (bias corrected) 0.171 MLE Sd (bias corrected) 0.171 Adjusted Level of Significance (8) 0.171											
69			Adjusted Level of Significance (β)	0.0312								
70	Approximate Chi Square Value (10.12, α)	4.014	Adjusted Chi Square Value (10.12, β)	3.519 0.491								
71	95% Gamma Approximate UCL (use when n>=50)	0.43	3 95% Gamma Adjusted UCL (use when n<50)									
72 73	Lognormal GOI	F Test on D	etected Observations Only									
74	Shapiro Wilk Test Statistic 0.901 Shapiro Wilk GOF Test											
75	5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Le	vel								
76	Lilliefors Test Statistic	0.224	Lilliefors GOF Test									
77	5% Lilliefors Critical Value	0.396	Detected Data appear Lognormal at 5% Significance Le	vel								
78	Detected Data appear Lognormal at 5% Significance Level											
79												
80	Lognormal ROS Statistics Using Imputed Non-Detects											
81	Mean in Original Scale	Mean in Log Scale	-3.876									
82	SD in Original Scale	0.374	SD in Log Scale	2.409								
83	95% t UCL (assumes normality of ROS data)	0.348	95% Percentile Bootstrap UCL	0.349								
84	95% BCA Bootstrap UCL	0.426	95% Bootstrap t UCL	0.762								
85	95% H-UCL (Log ROS)	14.97										
86												
87	5 5		es when Detected data are Lognormally Distributed									
88	KM Mean (logged)	-2.382	95% H-UCL (KM -Log)	0.339								
89	KM SD (logged)	1.012	95% Critical H Value (KM-Log)	2.811								
90	KM Standard Error of Mean (logged)	0.302										
91		DI /0.0	in the state of									
92	DL/2 Normal	DL/2 5	atistics									
93		0.18	DL/2 Log-Transformed Mean in Log Scale	-2.828								
94	Mean in Original Scale SD in Original Scale	0.18	SD in Log Scale	1.345								
95	95% t UCL (Assumes normality)	0.356	95% H-Stat UCL	0.52								
96			ded for comparisons and historical reasons									
97 98	DDZ to not a recommended me		22. 2. Somparisons and motorious readons									
98	Nonparamel	tric Distribu	tion Free UCL Statistics									
100	-		mal Distributed at 5% Significance Level									
101			<u> </u>									
101		Suggested	UCL to Use									
103	95% KM (t) UCL	0.381	95% KM (Percentile Bootstrap) UCL	N/A								
104	Warning: One or m	ore Recom	mended UCL(s) not available!									
105												
106	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL									
107	Recommendations are base	ed upon dat	a size, data distribution, and skewness.									
108	These recommendations are based upon the result	s of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).									
109	However, simulations results will not cover all Real Wo	orld data set	s; for additional insight the user may want to consult a statisticia	an.								
110												

	Α	В	С	D	E	F	G	Н	I	J	K	L		
1		UCL Statistics for Data Sets with Non-Detects												
2		User Sele	ected Options											
3	Dat		computation	23/10/2017 8	·11·06 AM									
5	Dui	0, 1,1110 01 0	From File	WorkSheet.x										
6		Fu	ıll Precision	OFF										
7		Confidence	Coefficient	95%										
8	Number o	f Bootstrap	Operations	2000										
9														
10	ВаР													
11														
12	General Statistics													
13	Total Number of Observations 14 Number of Distinct Observations 3 Number of Detects 3 Number of Non-Detects 1													
14			NI.	Number umber of Distin				Number of Non-Detects 11 Number of Distinct Non-Detects 1						
15			INI		nct Detects									
16									Minimum Non-Detect 0.05 Maximum Non-Detect 0.05					
17	Maximum Detect											78.57%		
18		Variance Detects Mean Detects												
19		Mean Detects Median Detects									CV Detects	0.0231 0.315		
21	Skewness Detects					0.06 1.732				Kurtosis Detects N/A				
22				Mean of Logg						SD of Logged Detects 0.295				
23						<u> </u>								
24	Warning: Data set has only 3 Detected Values.													
25	This is not enough to compute meaningful or reliable statistics and estimates.													
26		<u> </u>												
27														
28		Normal GOF Test on Detects Only												
29			S	hapiro Wilk Te	est Statistic	0.75			Shapiro V	Vilk GOF Te	st			
30			5% S	0.767		Detected Da			gnificance Leve	I				
31				0.385				s GOF Test						
32			5	% Lilliefors Cr					• •		Significance Le	/el		
33		Detected Data appear Approximate Normal at 5% Significance Level												
34														
35	Manual O OFF									Freez of Moon	0.00424			
36		Mear						Standard Error of Mean 95% KM (BCA) UCL						
37					SD KM (t) LICE	0.013 0.0625		95% KM (Percentile Bootstrap) UCI						
38	95% KM (t) UC 95% KM (z) UC					0.062		95% KM Bootstrap t UCL						
39 40			Ç	0% KM Cheb	. ,			95% KM Chebyshev UCL						
40	97.5% KM Chebyshev UCL					0.0815					hebyshev UCL	0.0735 0.0972		
42									• • •					
43				Ga	mma GOF	Tests on De	etected Obse	ervations O	nly					
44					Not En	ough Data to	Perform GO	OF Test						
45	Gamma Statistics on Detected Data Only													
45 46		k hat (MLE						k star (bias corrected MLE)						
			Theta hat (MLE)					Theta star (bias corrected MLE) N.						
46				Theta	hat (MLE)	0.00441			· · ·					
46 47				nı	ı hat (MLE)	99.69				nu star (t	oias corrected)	N/A		
46 47 48			MI		ı hat (MLE)	99.69					pias corrected) pias corrected)	N/A N/A		
46 47 48 49			MI	nı	u hat (MLE) corrected)	99.69 N/A								
46 47 48 49 50			MI	nı	u hat (MLE) corrected)	99.69 N/A na Kaplan-M	eier (KM) Sta	atistics			pias corrected)	N/A		
46 47 48 49 50 51			MI	nı	u hat (MLE) corrected)	99.69 N/A na Kaplan-M	eier (KM) Sta	atistics		MLE Sd (t	nu hat (KM)	N/A 504.6		
46 47 48 49 50 51				nu E Mean (bias	u hat (MLE) corrected) Gamm k hat (KM)	99.69 N/A na Kaplan-M	eier (KM) Sta		•	MLE Sd (b	nu hat (KM)	N/A 504.6 0.0312		
46 47 48 49 50 51 52 53			roximate Chi	nu E Mean (bias Square Value	Gamm k hat (KM)	99.69 N/A na Kaplan-M 18.02		,	Adjusted Ch	MLE Sd (b	nu hat (KM) Significance (β)	N/A 504.6 0.0312 447.1		
46 47 48 49 50 51 52 53	95%		roximate Chi	nu E Mean (bias	Gamm k hat (KM)	99.69 N/A na Kaplan-M 18.02		,	Adjusted Ch	MLE Sd (b	nu hat (KM)	N/A 504.6 0.0312		

	Α	В	С	D	Е	F	G	Н	I	J	К	L		
58	Lognormal GOF Test on Detected Observations Only													
59			S	hapiro Wilk 1	est Statistic	0.75	Shapiro Wilk GOF Test							
60			5% SI	napiro Wilk C	Critical Value	0.767	Detected Data Not Lognormal at 5% Significance Level							
61				Lilliefors 7	est Statistic	0.385			Lilliefors	GOF Test				
62			5	% Lilliefors C	Critical Value	0.512	Det	ected Data a	ppear Logno	ormal at 5% S	ignificance Le	evel		
63	Detected Data appear Approximate Lognormal at 5% Significance Level													
64														
65	Lognormal ROS Statistics Using Imputed Non-Detects													
66				Mean in O	riginal Scale	0.0315	Mean in Log Scale -3.743							
67				SD in O	riginal Scale	0.0261	SD in Log Scale 0.785							
68		95% t U	f ROS data)	0.0438			95%	Percentile Bo	otstrap UCL	0.0433				
69			ę	95% BCA Bo	otstrap UCL	0.0468				95% Boo	tstrap t UCL	0.0499		
70	95% H-UCL (Log ROS) 0.055													
71														
72	UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed													
73				KM Me	ean (logged)	-2.92		95% H-UCL (KM -Log) 0						
74				KM	SD (logged)	0.183		95% Critical H Value (KM-Log) 1.8						
75			KM Standar	d Error of Me	ean (logged)	0.0598								
76														
77	DL/2 Statistics													
78		DL/2 Normal DL/2 Log-Transformed												
79				Mean in O	riginal Scale	0.0354	Mean in Log Scale -3.465							
80				SD in O	riginal Scale	0.0225	SD in Log Scale 0.46							
81	95% t UCL (Assumes normality) 0.046 95% H-Stat UCL								0.0449					
82	DL/2 is not a recommended method, provided for comparisons and historical reasons													
83														
84		Nonparametric Distribution Free UCL Statistics												
85			Dete	ected Data a	ppear Appro	oximate Nor	mal Distribu	ted at 5% S	ignificance l	Level				
86														
87		Suggested UCL to Use												
88				95%	% KM (t) UCL 0.0625 95% KM (Percentile Bootstrap) UCL N/A							N/A		
89		Warning: One or more Recommended UCL(s) not available!												
90														
91	N	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
92			R	ecommenda	tions are bas	ed upon dat	a size, data	distribution,	and skewnes	SS.				
93		These recom	mendations	are based u	pon the resul	ts of the sim	ulation stud	ies summari	zed in Singh	, Maichle, an	d Lee (2006).			
94	Hov	wever, simula	tions results	will not cove	er all Real W	orld data set	s; for addition	onal insight t	he user may	want to cons	sult a statistici	an.		
95														
95														