Oxford Falls Grammar School

Preliminary Site Investigation, 1078 Oxford Falls Road, Oxford Falls, NSW.

•••

Ð

WASTEWATER

GEOTECHNICAL

CIVIL

PROJECT MANAGEMENT

P1907548JR01V02 March 2020

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to to provide a Preliminary Site Investigation at the subject site in accordance in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Oxford Falls Grammar School (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© March 2020 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 Phone: +61-2-9476-9999 Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

	Document and Distribution Status							
Author(s)		Reviewer(s)		Project Manager		Signature		
William Xu		Brett McLennan Jeff Fulton		Jeff Fulton		Click		
ċ					Distribution			
Revision No.	Description	Status	Release Date	File Copy	Oxford Falls Grammar School	EPM Projects		
1	Draft for Client comment	Draft	14.02.2020	1E 1P	1P	1P		
2	Amended draft report	Draft	19.02.2020	1E 1P	1P	1P		
3	Final for submission	Final	20.03.2020	1E 1P	1P	1P		

Distribution Types: F = fax, H = hard copy, P = PDF document, E = other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 INTRODUCTION	7
1.1 Overview	7
1.2 Previous Assessments	7
1.3 Proposed Development	7
1.4 Objectives	7
1.5 Project Scope	8
1.6 Guideline Reference Documents	8
2 SITE DESCRIPTION	9
2.1 Site Details	9
2.2 Hydrogeology	10
3 SITE CONTAMINATION ASSESSMENT	11
3.1 Council Historical Site Records (JK, 2019)	11
3.2 NSW EPA Records	11
3.3 External Potentially Contaminating Activities	12
3.4 Aerial Photograph Review	12
3.5 Site Walkover Inspection	13
3.6 Preliminary Areas of Environmental Concern/Contaminants of Concern	Potential 13
3.7 Previous Assessment Results	13
4 DISCUSSION AND CONCLUSION	15
5 RECOMMENDATIONS	
6 LIMITATIONS STATEMENT	
7 REFERENCES	
anta	

Attachments

ATTACHMENT A : AERIAL PHOTOGRAPHY

ATTACHMENT B : PROPOSED DEVELOPMENT PLANS

ATTACHMENT C: EIS WASTE CLASSIFICATION ASSESSMENT AND SOIL SUITABILITY ANALYSIS (2017)

Tables

Table 1: Site background information. 9
Table 2: Available hydrogeological information
Table 3: Available Council records. 11
Table 4: Potentially contaminating activities. 11
Table 5: Aerial photograph observations from 1956 to 2019. 12
Table 6: Preliminary areas of environmental concern and contaminants of potential concern. 13

General Abbreviations

•••	
AASS	Actual acid sulfate soil
ABC	Ambient background concentrations
ACM	Asbestos containing material
AEC	Area of environmental concern
AF	Asbestos fines
AMP	Asbestos Management Plan
ANZECC	Australia and New Zealand Environment Conservation Council
ANZG	Australian and New Zealand Governments
ASC NEPM	National Environmental Protection (Assessment of Site Contamination) Measure (2013)
ASS	Acid sulfate soil
ASSMAC	Acid Sulfate Soils Management Advisory Committee
AST	Above ground storage tank
BGL	Below ground level
BH	Borehole
BTEXN	Benzene, toluene, ethylbenzene, xylene, naphthalene
CEMP	Construction Environmental Management Plan
COC	Chain of custody
COPC	Contaminants of potential concern
DA	Development application
DBT	Dibutyltin
DEC	Department of Environment and Conservation
DECC	Department of Environment and Climate Change
DNAPL	Dense non aqueous phase liquid
DP	Deposited Plan
DPI	NSW Department of Primary Industry
DPIW	NSW Department of Primary Industry – Water
DQI	Data quality indicators
DQO	Data quality objectives
DSI	Detailed Site Investigation
EAC	Ecological assessment criteria
EIL	Ecological investigation level
EMP	Environmental Management Plan
EPA	NSW Environmental Protection Authority
EQL	Estimated quantitation limit (Interchangeable with PQL and LOR)
ESA	Environmental Site Assessment
ESL	Ecological screening level
FA	Fibrous asbestos
GIL	Groundwater investigation level
HIL	Health investigation level
HM	Heavy metals
HSL	Health screening level
IA	Investigation area
ISQG	Interim Sediment Quality Guideline
ITP	Inspection Testing Plan
LGA	Local government area
LOA	Light non aqueous phase liquid
LINAFL	
MA	Limit of reporting (Interchangeable with EQL and PQL)
mahd	Martens & Associates Pty Ltd
	Metres, Australian Height Datum
mbgl	Metres below ground level

MBT Monobutyltin MNA Monitored natural attenuation MPE Multi phase extraction NAPL Non aqueous phase liquid NATA National Association of Testing Authorities ND No data NEPC National Environment Protection Council NEPC National Environment Protection Measure OCP Organochloride pesticides OEH NSW Office of Environment and Heritage OPP Organophosphorus pesticides PACM Potential asbestos containing material PAH Polycyclic aromatic hydrocarbons PASS Potential acid sulfate soil PCEMP Post Construction Environmental Management Plan PESA Preliminary Environmental Site Assessment PFAS Per- and polyfluoroalkyl substances PID Photoionisation detector ppb Parts per billion ppm Parts per million PQL Practical quantifative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remedial Action Plan </th
MPEMulti phase extractionNAPLNon aqueous phase liquidNATANational Association of Testing AuthoritiesNDNo dataNEPCNational Environment Protection CouncilNEPMNational Environment Protection MeasureOCPOrganochloride pesticidesOEHNSW Office of Environment and HeritageOPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per millionppmParts per millionPQLPrecliminary Site InvestigationQA/QCCQuality assurance / quality controlRACRemedial Action PlanHIRAHuman Health Risk AssessmentRPDRelative percentage difference
NAPLNon aqueous phase liquidNATANational Association of Testing AuthoritiesNDNo dataNEPCNational Environment Protection CouncilNEPMNational Environment Protection MeasureOCPOrganochloride pesticidesOEHNSW Office of Environment and HeritageOPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCCQuality assurance / quality controlRAPRemedial Action PlanHIRAHuman Health Risk AssessmentRPDRelative percentage difference
NATANational Association of Testing AuthoritiesNDNo dataNEPCNational Environment Protection CouncilNEPMNational Environment Protection MeasureOCPOrganochloride pesticidesOEHNSW Office of Environment and HeritageOPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBPolychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRAPRemedial Action PlanHIRAHuman Health Risk AssessmentRPDRelative percentage difference
NDNo dataNEPCNational Environment Protection CouncilNEPMNational Environment Protection MeasureOCPOrganochloride pesticidesOEHNSW Office of Environment and HeritageOPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBPotychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRACRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
NEPCNational Environment Protection CouncilNEPMNational Environment Protection MeasureOCPOrganochloride pesticidesOEHNSW Office of Environment and HeritageOPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBMPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRACRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
NEPM National Environment Protection Measure OCP Organochloride pesticides OEH NSW Office of Environment and Heritage OPP Organophosphorus pesticides PACM Potential asbestos containing material PAH Polycyclic aromatic hydrocarbons PASS Potential acid sulfate soil PCB Polychlorinated biphenyl PCEMP Post Construction Environmental Management Plan PESA Preliminary Environmental Site Assessment PFAS Per- and polyfluoroalkyl substances PID Photoionisation detector ppb Parts per billion ppm Parts per million PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
OCPOrganochloride pesticidesOEHNSW Office of Environment and HeritageOPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBPolychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRACRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
OEHNSW Office of Environment and HeritageOPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBPolychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRAPRemediation acceptance criteriaRAPRemediation PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
OPPOrganophosphorus pesticidesPACMPotential asbestos containing materialPAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBPolychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPrectical quantitative limit [Interchangeable with EQL and LOR]PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRAPRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
PACM Potential asbestos containing material PAH Polycyclic aromatic hydrocarbons PASS Potential acid sulfate soil PCB Polychlorinated biphenyl PCEMP Post Construction Environmental Management Plan PESA Preliminary Environmental Site Assessment PFAS Per- and polyfluoroalkyl substances PID Photoionisation detector ppb Parts per billion ppm Parts per million PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
PAHPolycyclic aromatic hydrocarbonsPASSPotential acid sulfate soilPCBPolychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPreclical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRACRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
PASSPotential acid sulfate soilPCBPolychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPrectical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRACRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
PCBPolychlorinated biphenylPCEMPPost Construction Environmental Management PlanPESAPreliminary Environmental Site AssessmentPFASPer- and polyfluoroalkyl substancesPIDPhotoionisation detectorppbParts per billionppmParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRACRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
PCEMP Post Construction Environmental Management Plan PESA Preliminary Environmental Site Assessment PFAS Per- and polyfluoroalkyl substances PID Photoionisation detector ppb Parts per billion ppm Parts per million PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
PESA Preliminary Environmental Site Assessment PFAS Per- and polyfluoroalkyl substances PID Photoionisation detector ppb Parts per billion ppm Parts per million PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
PFAS Per- and polyfluoroalkyl substances PID Photoionisation detector ppb Parts per billion ppm Parts per million PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
PID Photoionisation detector ppb Parts per billion ppm Parts per million PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
ppbParts per billionppmParts per millionPQLPractical quantitative limit (Interchangeable with EQL and LOR)PSIPreliminary Site InvestigationQA/QCQuality assurance / quality controlRACRemediation acceptance criteriaRAPRemedial Action PlanHHRAHuman Health Risk AssessmentRPDRelative percentage difference
ppm Parts per million PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
PQL Practical quantitative limit (Interchangeable with EQL and LOR) PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
PSI Preliminary Site Investigation QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
QA/QC Quality assurance / quality control RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
RAC Remediation acceptance criteria RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
RAP Remedial Action Plan HHRA Human Health Risk Assessment RPD Relative percentage difference
HHRAHuman Health Risk AssessmentRPDRelative percentage difference
RPD Relative percentage difference
SAC Site assessment criteria
SAQP Sampling and Analysis Quality Plan
SEPP State Environmental Planning Policy
SIL Soil investigation level
SOP Standard operating procedure
SWL Standing water level
SWMS Safe Work Method Statement
TB Trip blank
TBT Tributyl tin
TCLP Toxicity characteristics leaching procedure
TEQ Toxic equivalency factor
TP Test pit
TPH Total petroleum hydrocarbons
TRH Total recoverable hydrocarbons
TS Trip spike
UCL Upper confidence limit
UPSS Underground petroleum storage system
UST Underground storage tank
VHC Volatile halogenated compounds
VOC Volatile organic compounds
WHS Work health and safety
WHSP Work Health and Safety Plan

1 Introduction

1.1 Overview

This report, prepared by Martens and Associates (MA), documents a Preliminary Site Investigation (PSI) of potentially contaminating activities, to support a Part 5 Activity using a Review of Environmental Factors for construction of the administration and library development (the Project) for Oxford Falls Grammar School at 1075 Oxford Falls Road,Oxford Falls, NSW ('the site').

The investigation area (IA) for this PSI is limited to the southeast portion of the school site, as shown in Attachment A.

1.2 Previous Assessments

JK Environmental previously undertook a Stage 1 Environmental Site Assessment (report reference E30807Brpt Rev2) for a proposed kiosk in the southwest portion of the school site [November 2019] (JK, 2019).

JK Geotechnics previously provided a geotechnical investigation (report reference 30807SYrpt) for the proposed sporting facility, car park and playing field in the southern portion of the site [October 2017] (JK, 2017).

Environmental Investigation Services (EIS) undertook a Waste Classification Assessment and Soil Suitability Analysis (report reference E30807KMlet-WC_rev1) for the playing field in the southwest portion of the site [November, 2017] (EIS, 2017). The testing undertaken as part of EIS (2017) covers the IA for this PSI. EIS's (2017) results and findings are summarised in Section 3.8, with a copy of their assessment provided in Attachment C.

1.3 Proposed Development

The proposed site development involves the construction of an on grade car park with first floor library, and an administration building directly north of the library (EPM, 2019).

The proposed development plans are provided in Attachment B.

1.4 Objectives

Investigation objectives include:

• Identification of historic and current potentially contaminating site activities.

- Evaluation of areas of environmental concern (AEC) and associated contaminants of potential concern (COPC) within the IA.
- Assess identified AEC and associated COPC.
- Provide comment on the suitability of the IA for the future use, and where required, provide recommendations for additional investigations.

1.5 Project Scope

The scope of works includes:

- Walkover inspection to review current land use, potential contaminating activities and neighbouring land use.
- Site history review using aerial photographs and available historic records.
- Review of previous investigations on the site related to contamination.
- Review of NSW EPA notices under the Contaminated Land Management Act (1997).
- Preparation of a report in general accordance with the relevant sections of NSW OEH (2011) and ASC NEPM (2013) and EPA (2017).

1.6 Guideline Reference Documents

- ASC NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure. Referred to as ASC NEPM (2013).
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

2 Site Description

2.1 Site Details

Site information is summarised in Table 1, and site location and general surrounds shown in Attachment A.

Table 1: Site background information.

ltem	Description / Detail
Site address	1078 Oxford Falls Road, Oxford Falls, NSW.
Legal Identifier	Lot 100 DP 1240806
Approximate site area	4.2 ha (Sixmaps, 2019)
Approximate IA area	0.5 ha (Sixmaps, 2019)
Local Government Area	Northern Beaches Council
Current zoning and land use	Zoned RE1 – Public Recreation (Planning Portal, 2019). Site is currently used for as a primary and secondary school.
Site description	Oxford Falls Grammar School at the north and southeast portion of the site, and a sports field at the southwest portion of the site.
Surrounding land uses	Church to the west of the site. Low density residential dwellings east and south.
Topography	The site is relatively flat with grades < 5%. Site elevation ranges between approximately 79 mAHD in the northeastern portion and 73 mAHD in the western portion of the site (Google Earth Pro. 2019).
Expected geology	The Sydney 1:100,000 Geological Sheet 9030 describes site geology as Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses. The NSW Environment and Heritage eSPADE website identifies the northeast portion of the site as having soils of the Hawkesbury landscape comprising of shallow discontinuous lithosols / siliceous sands associated with rock outcrops; earth sands, yellow earths and fractures; localised yellow and red podzolic soils associated with shale lenses; siliceous sands and secondary yellow earths along drainage lines. The remainder of the site have soils of the Oxford Falls landscape having moderately deep to deep earthy sands, yellow earths, siliceous sands on slopes; deep leaches sands, podzols and grey earths on valley floors.
Surface hydrology	Drainage of the site is via overland flow northwest, to an unnamed tributary of Middle Creek (which bisects the school site). The unnamed tributary is located along the northeast boundary of the IA.

2.2 Hydrogeology

Review of WaterNSW Real-time Water Database, indicated two groundwater bores within 500 m of the site, as summarised in Table 2.

Table 2: Available hydrogeological information.

Bore Identification	Record Date	Intended Use	Standing Water Level (mbgl)	First Water Bearing Zone (mbgl) and Substrate	Distance and Direction from IA
GW108250	2007	Recreation	21.0	Sandstone	350 m southwest
GW032798	1970	Domestic	4.8	Sandstone	450 m northwest

Groundwater inflow was encountered during a geotechnical investigation by JK (2017) between 3-5 mbgl, with standing water levels between 2.8-4.5 mbgl.

No springs were listed within 500 m of the site in the NSW Government Hydrography Spatial Data (SEED, 2019).

Should further information on permanent site groundwater conditions be required, an additional assessment would need to be carried out (i.e. installation of groundwater monitoring bores / ongoing groundwater monitoring).

3 Site Contamination Assessment

3.1 Council Historical Site Records (JK, 2019)

One historic development record was held by Council for the site. Details are summarised in Table 3 and records can be found in JK (2019).

Lot ID	Year	Record Number	Description
Lot 100 DP 1240806	1979	3675/P1 079- 1080	Erection of stages of a primary and infants school comprising twelve classrooms, library, hall and administration office, playing field, carpark and associated landscaping. The enclosed pool and caretaker's cottage were to be retained. Proposed playing field involved site filling for flat surface.

 Table 3: Available Council records.

3.2 NSW EPA Records

No sites within 500 m of the IA were identified on the list of NSW contaminated sites notified to the EPA as required by the Contaminated Land Management Act (1997) and the Environmentally Hazardous Chemicals Act (1985).

One site within 500 m of the IA was listed on the EPA public register required under section 308 of the Protection of the Environment Operations Act 1997 (the POEO Act), which lists licences, notices penalty notices and convictions, is summarised in Table 4.

 Table 4: Potentially contaminating activities.

Licence Number	Site Name	Approximate Distance from Site Boundary	Direction from Site	Gradient from Site
4584	Numeve Pty Ltd	290 m	Northeast	Up gradient

The licenced activities include the recovery of general waste, waste storage and application of herbicides to waterways.

Due to the distance and proximinity from the site, the above location is not expected to have impacted near surface soils or groundwater within the IA.

Due to the above site being downstream of the IA, the above activity is also unlikely to have impacted surface water at the IA.

3.3 External Potentially Contaminating Activities

No potentially contaminating activities, such as service stations, mechanics and dry cleaners, were identified within 500 m of the site.

3.4 Aerial Photograph Review

Aerial photographs taken of the site during between 1956 and 2019, were reviewed to investigate historic site land uses (Table 4). Copies of aerial photographs from 1956 to 2009 are provided in JK (2019), and are reproduced as shown in Attachment A along with a recent site aerial from Nearmap 2019.

The aerials indicated that the IA was cleared prior to 1956, and a large shed constructed between 1961 and 1965. The large shed was demolished between 1982 and 1991, and the current site conditions were constructed between 1991 and 2005.

Year (Source)	IA Activity	Surrounding Land Use
1956	The site was cleared.	Surrounding land was rural residential properties with market gardens and orchards, particularly to the west.
1961	Little to no change from previous.	Sheds constructed to the west, otherwise little to no change from previous.
1965	A large shed (possible warehouse) was constructed to the west of the IA which partly protruded into the IA.	Sheds constructed to the north, otherwise little to no change from previous.
1970	Little to no change from previous.	Little to no change from previous.
1982	Little to no change from previous, minor extension to eastern side of shed.	A number of sheds in the north in the site demolished, otherwise little to no change from previous.
1991	Large shed was demolished.	Sheds demolished to the west, otherwise little to no change from previous.
2005	The current oval was constructed.	Oxford Falls Grammar School has been constructed. The area west of the site was no longer used for agricultural purposes and a church has been constructed to the west of the site. Residential development constructed to the east.
2009	Little to no change from previous.	Little to no change from previous.
2019 (Nearmaps)	Little to no change from previous.	Little to no change from previous.

 Table 5: Aerial photograph observations from 1956 to 2019.

3.5 Site Walkover Inspection

Observations during the site walkover inspection 17 December 2019, were as follows:

- The IA was used as a sports field with an unamed tributary of Middle Creek flowing northwest along the northern and eastern boundary of the IA.
- The school site is bisected by the tributary of Middle Creek along a southeast to northwest transect.
- The site was bounded by Oxford Falls Road to the east, Dreadnought Road to the south, Wakehurst Parkway to the west and bush to the north.
- The IA appeared to be composed of fill to level the sports field, as observed from the raised levee banks from the unnamed tributary.
- No other obvious signs of contamination (i.e. asbestos, soil staining, odours) were noted.

3.6 Preliminary Areas of Environmental Concern/Contaminants of Potential Concern

Our assessment of site AEC and COPC (Table 6) for the IA was made on the basis of available site history, aerial photograph interpretation, site walkover and geotechnical drilling (JK, 2017).

 Table 6: Preliminary areas of environmental concern and contaminants of potential concern.

AEC	Potential for Contamination	COPC
AEC A Fill	Fill from unknown sources has the potential to add contamination including hydrocarbons, heavy metals, pesticides and asbestos.	HM, TRH, BTEXN, PAH, OCP / OPP and asbestos
AEC B Former shi including 5 curtilage	Pesticides and heavy metals may have been used underneath past shed for pest control. Building construction may include PACM, zinc treated (galvanised) metals, and lead based paints. Garage may have previously stored fuels, oils and chemicals.	HM, TRH, BTEXN, PAH, OCP / OPP and asbestos

3.7

3.7 Previous Assessment Results

Subsurface soil investigation by EIS (2017) to support a waste classification assessment and soil suitability analysis within the sports

playing field involved the excavation of twenty one boreholes, of which ten were inside the IA for this investigation. Fill was observed up to 2.5 mbgl (BH4) and alluvium up to 5.5 mbgl (BH4).

Soil samples were sent to a NATA registered laboratory (Envirolab Services) by EIS (2017) for soil analysis, which involved:

- Fifteen samples for HM, BTEXN, PAH, TRH;
- Ten samples for asbestos;
- Five samples for OCP and OPP.

BTEXN, TRH, OCP and OPP results were all below laboratory practical quantitation limits (PQL), and all other results were below ASC NEPM (2013) site assessment criteria (SAC) for Residential A.

No asbestos was detected in samples analysed.

4 Discussion and Conclusion

The review of the site history indicated that the IA was cleared prior to 1956 and a large shed constructed between 1961 and 1965. The shed was demolished between 1982 and 1991, and the current Oxford Falls Grammar school oval has been in place since.

Potential contamination sources are summarised as:

- The entire IA which appears to be filled to level the sports field.
- Former shed which occupied a small eastern portion within the IA.

Subsurface soil investigation by JK (2017) indicated fill was observed up to 2.5 mbgl (BH4) and alluvium up to 5.5 mbgl (BH4).

EIS (2017) documented a waste classification and soil suitability analysis which covered the entire IA and preliminary AEC noted in this PSI. Samples were sent to a laboratory and assessed against COPC noted in this PSI.

Soil analysis indicated all samples to be below ASC NEPM (2013) Residential A guidelines. In light of this, the fill across the entire IA and former shed AEC is not considered to pose a risk of contamination and does not require further investigation.

Overall, the IA is considered to have a low risk of broadscale or localised contamination, and will be suitable for the proposed development. It should be noted, however, that past filling undertaken from unknown sources still has a risk of contamination. This risk should be managed by implementing an appropriately prepared unexpected finds protocol. This document should be made available to all contractors working on the site and included as part of the site induction process.

5 Recommendations

Based on the findings of the historical analysis and EIS (2017) soil analysis results, no further investigation for contamination is warranted.

An unexpected finds protocol is to be prepared prior to works commencing on the site. If any unexpected finds (such as fibro material, odours or soil staining) are encountered during site works, the unexpected find will require assessment by MA to determine requirements for additional investigation and / or remedial action.

If any soil material is removed from site, a formal waste classification assessment shall be required in accordance with the NSW EPA Waste Classification Guidelines (2014).

6 Limitations Statement

The PSI was undertaken in line with current industry standards.

It is important, however, to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land-uses. Therefore, this report should not be read as a guarantee that no contamination shall be found on the site. Should material be exposed in future which appears to be contaminated or inconsistent with natural site soils, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of the current development proposal. No reliance on this report should be made for any other investigation or proposal. Martens & Associates Pty Ltd accepts no responsibility and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

7 References

- ASC NEPM (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure, 2013.
- Environmental Information Services (2017) Waste Classification Assessment and Soil Suitability Analysis (Proposed playing field development at Oxford Grammar School). Ref. E30807KMlet-WC_rev1 (ElS, 2017).
- EPM Projects Pty Ltd (2019), Oxford Falls Grammar School Main Works Project Brief, Document No. P02-TEM-004, Revision A (EPM, 2019).

Google Earth Pro (2019).


- Herbert C., 1983, Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney.
- JK Geotechnics (2017) Geotechnical Investigation (Proposed new sporting facility, car park and playing field at Oxford Grammar School). Ref. 30807SYrpt (JK, 2017).
- JK Environmental (2019) Stage 1 Environmental Site Assessment (Proposed new kiosk development at Oxford Grammar School). Ref. E30807Brpt Rev. 2 (JK, 2019).Nearmap – Aerial photographs (2019).
- NSW Department of Environment & Heritage (eSPADE, NSW soil and land information), www.environment.nsw.gov.au.
- NSW Department of Planning, Industry and Environment (Planning Portal, 2019) www.planningportal.nsw.gov.au/spatialviewer.
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (2014) Waste Classification Guidelines.NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, 2nd Edition.Sixmaps (2019)
- State Environmental Planning Policy No. 55 Remediation of Contaminated Land.
- WaterNSW Real-Time Water Database, accessed 16 December 2019, https://realtimedata.waternsw.com.au/water.stm.

Attachment A: Aerial Photography

1:2500 @ A4

0

30

60

90

120

150 m

Map Title / Figure: 2019 Aerial Image (Nearmaps, 2019)

Map 01 1078 Oxford Falls Road, Oxford Falls, NSW Proposed library, carpark and adminstration building Preliminary Site Investigation Sub-Project Oxford Falls Grammar School 18/12/2019

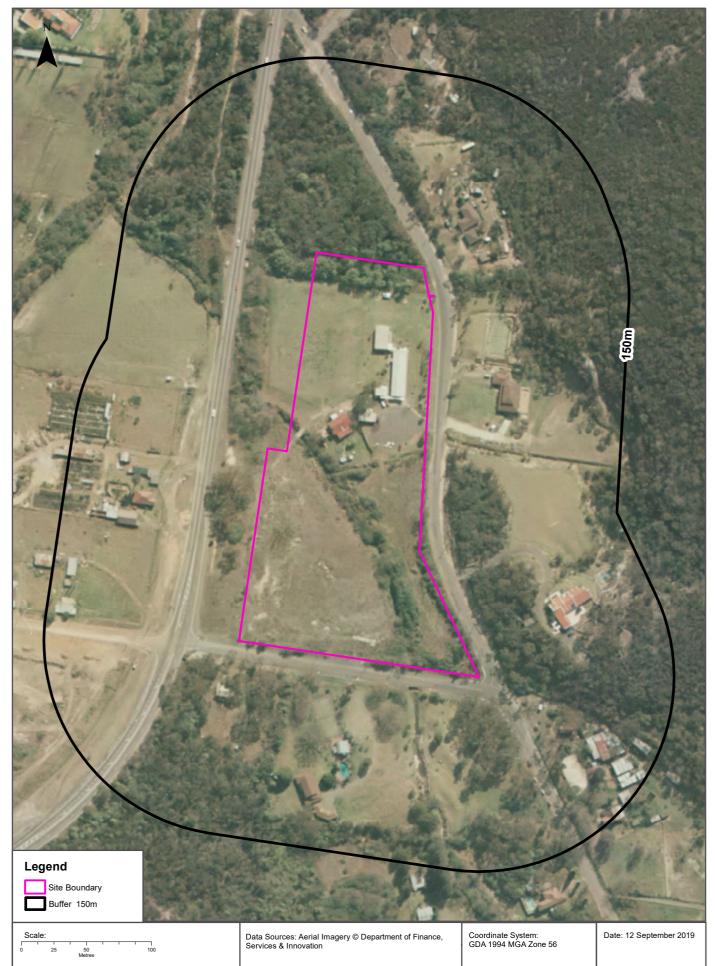
Мар

Site

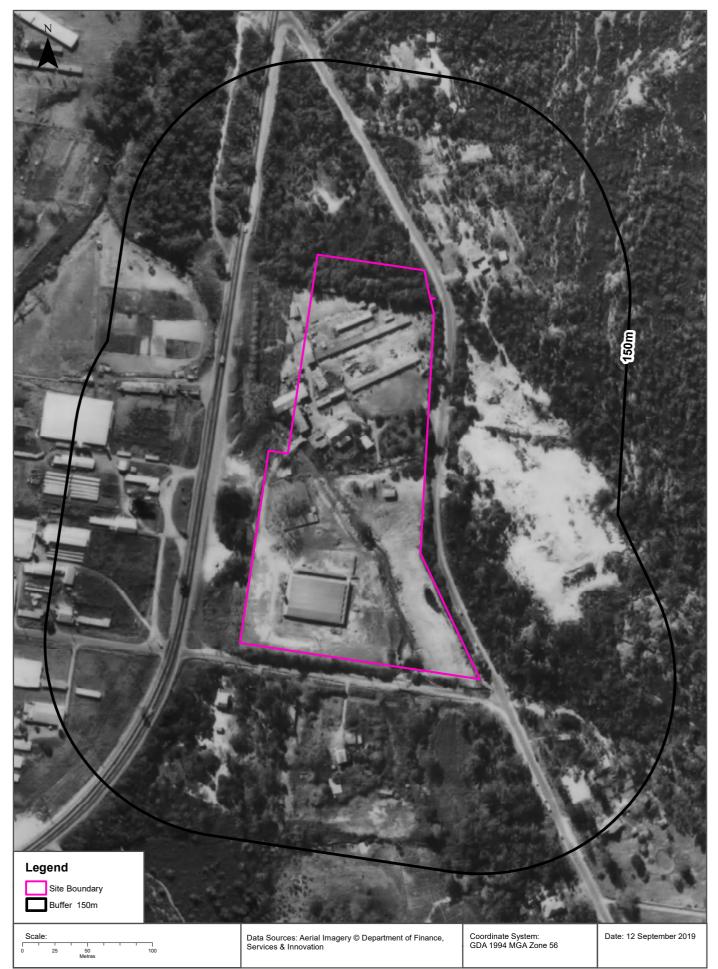
Project

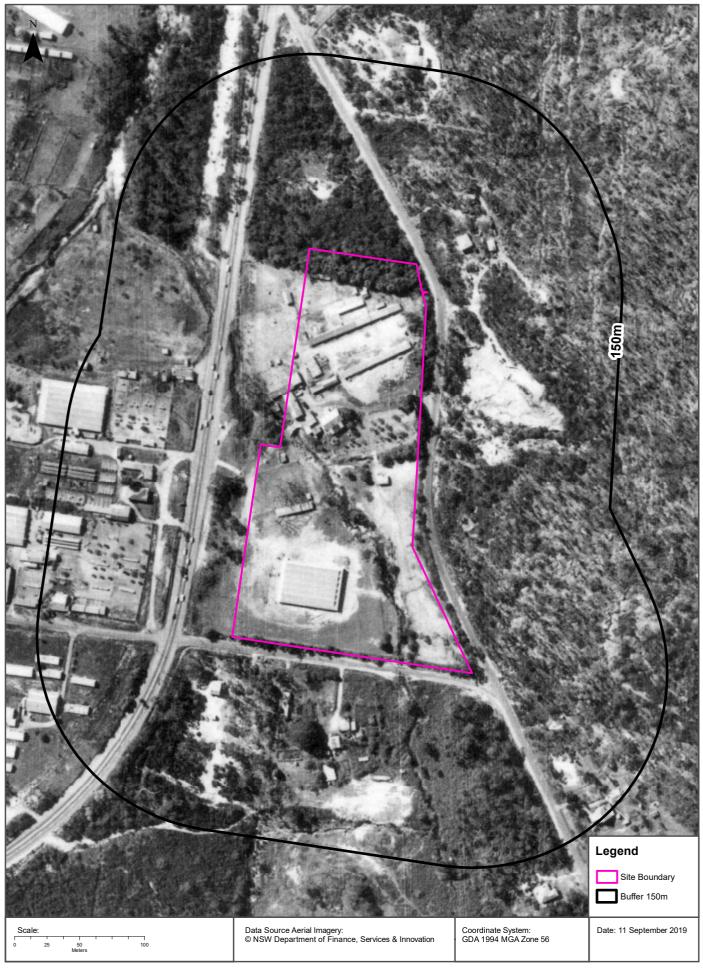
Client

Date

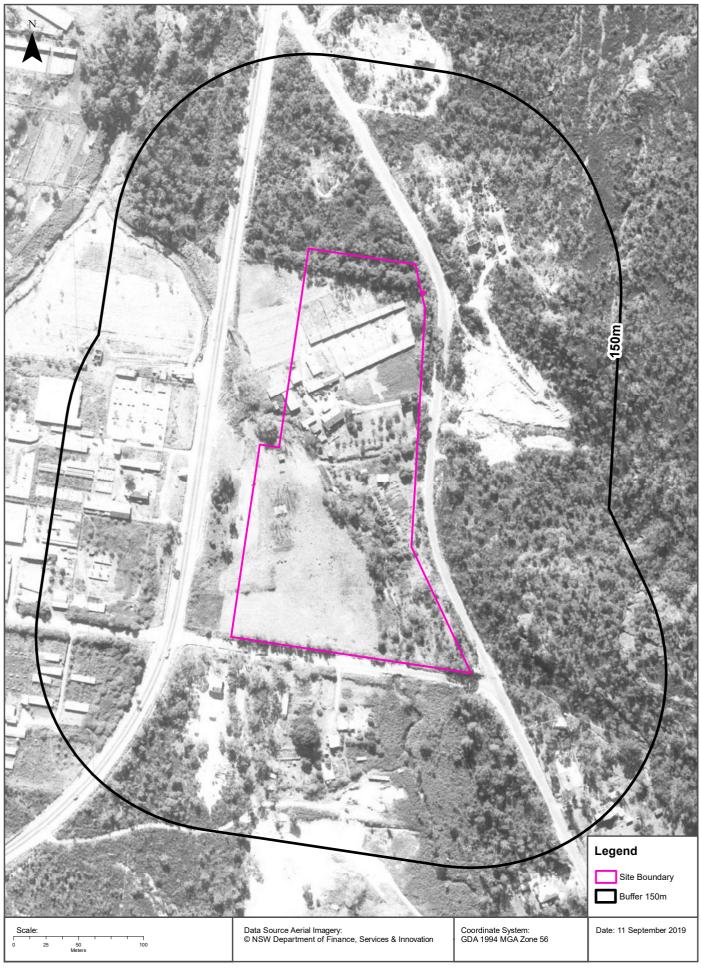


Aerial Imagery 1991 Wakehurst Parkway, Oxford Falls, NSW 2100

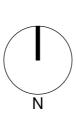

Aerial Imagery 1982 Wakehurst Parkway, Oxford Falls, NSW 2100



Aerial Imagery 1970 Wakehurst Parkway, Oxford Falls, NSW 2100



Attachment B: Proposed Development Plans



FOR REVIEW OF ENVIRONMENTAL FACTORS OXFORD FALLS GRAMMAR SCHOOL LIBRARY / ADMIN BUILDING

1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100

Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264, Peter Ireland 6661

Ke

DRAWING LIST

REF101	SITE PLAN
REF201	GROUND LEVEL PLAN
REF202	LEVEL 1 PLAN
REF203	ROOF PLAN
REF311	ELEVATIONS - SHEET 1
REF312	ELEVATIONS - SHEET 2
REF321	SECTIONS
REF401	SHADOW DIAGRAMS
REF601	PERSPECTIVES

ABBREVIATIONS

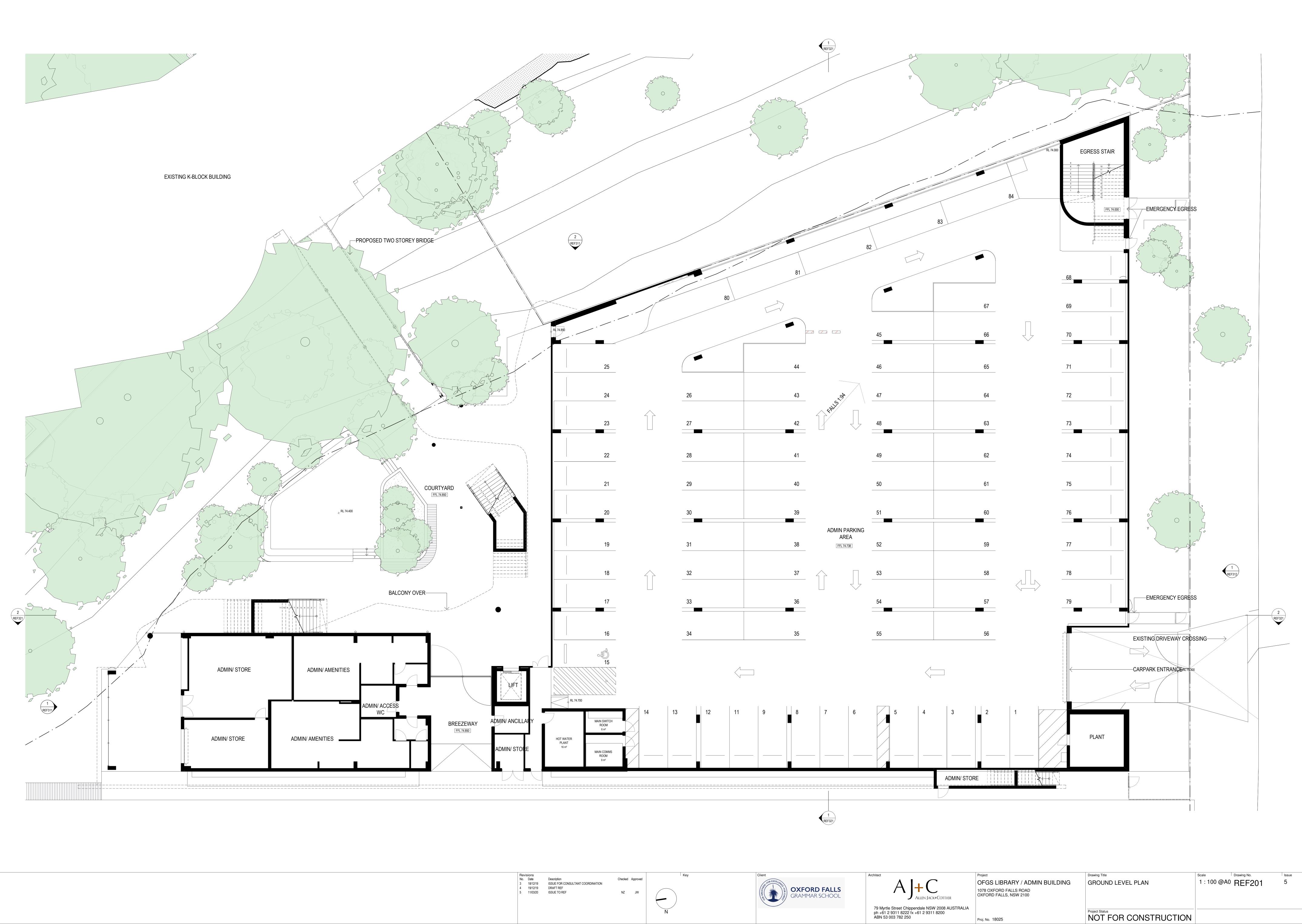
Project OFGS LIBRARY / ADMIN B 1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100

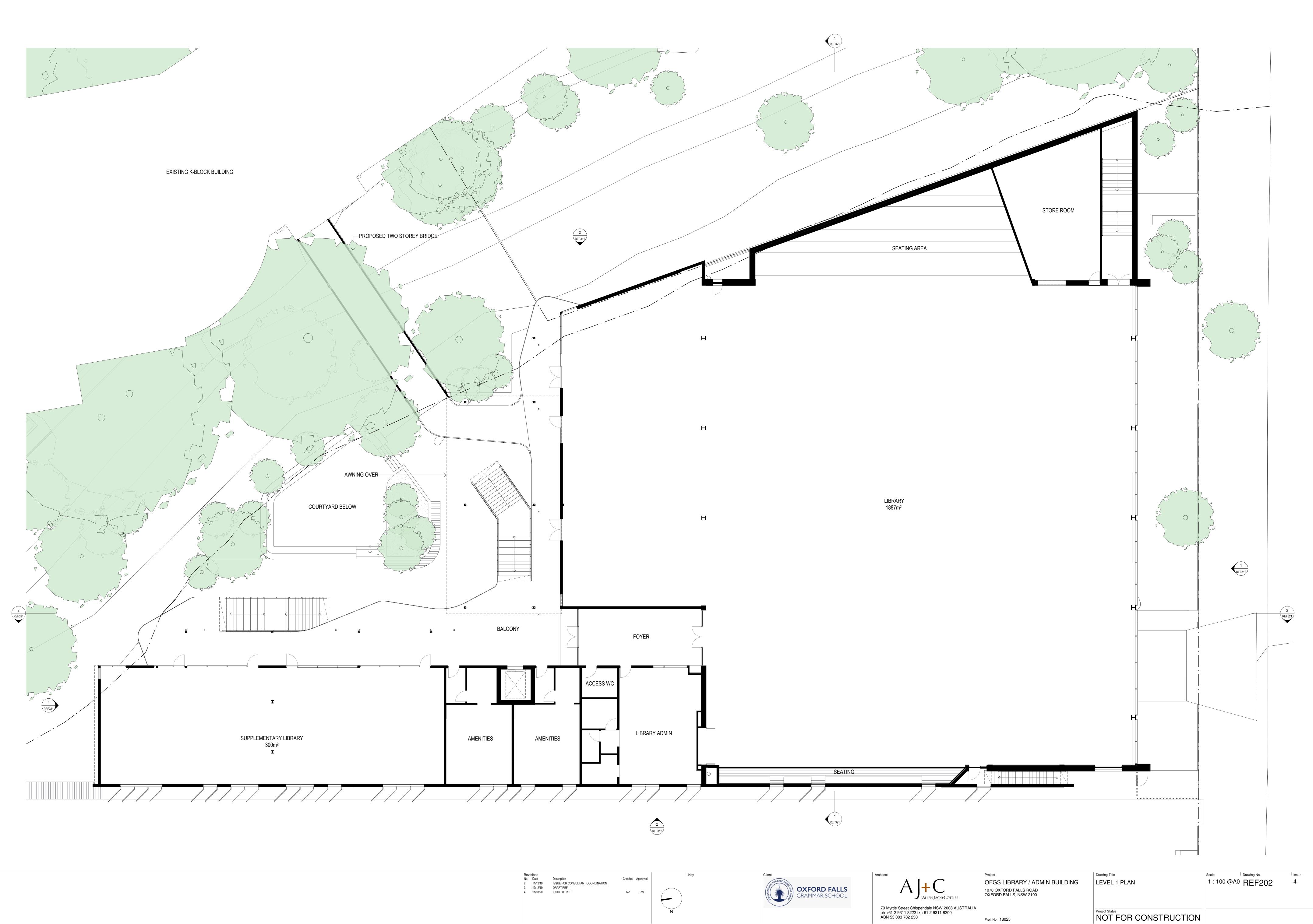
Proj. No. 18025

REF	REFRIGERATOR
RA	RETURN AIR
RAD	RADIUS
	REINFORCED CONCRETE
	RANGE HOOD
	ROBE HOOK
	RECTANGULAR HOLLOW SECTION
	RENDER JOINT (V-JOINT) REDUCED LEVEL
	RIGHT OF WAY
	ROLLER SHUTTER
RW	RETAINING WALL
RWH	RAINWATER HEAD
RWO	RAINWATER OUTLET TO STORMWA
RWP	RAINWATER PIPE
SA	SUPPLY AIR
	STEEL COLUMN
	SUNSCREEN
	SUSPENDED CEILING TILE
	SEWER DRAIN STRUCTURE FINISHED LEVEL
	SHOWER BATH
	SHOWER
	SQUARE HOLLOW SECTION
SK	SKIRTING
SKL	SKYLIGHT
SNK	SINK
SP	SEWER PIT
	SPECIFICATION
	SPLASHBACK
	SHOWER ROSE
	STAINLESS STEEL STONE
	SEWER VENT PIPE
	STORM WATER
	STORMWATER PIT
Т	TILE
TEL	TELEPHONE
TGSI	TACTILE INDICATORS
	TIMBER
	TOP OF HOB
	TOP OF KERB
	TOP OF WALL
	TAP TOILET PAPER HOLDER
	TOWEL RAIL
	TERRAZZO
TUB	LAUNDRY TUB
TV	TELEVISION
TYP	TYPICAL
U/G	UNDERGROUND
U/S	UNDERSIDE
	UNIVERSAL BEAM
	UNIVERSAL COLUMN
	URINAL
-	VINYL VANITY BASIN
	VERIFY ON SITE
	VENT PIPE
W	WINDOW
WB	WEATHERBOARD
WC	WATER CLOSET
WIR	WALK-IN-ROBE
WM	WASHING MACHINE
WO	WALL OVEN
WP	WASTE PIPE
	RA RAD RC RGH RHS RJ RL WW RS RW H RWP SA SC RCT SD SFL SHS SK SK SF SFL SFL SFL SFL SFL SFL SFL SFL SFL

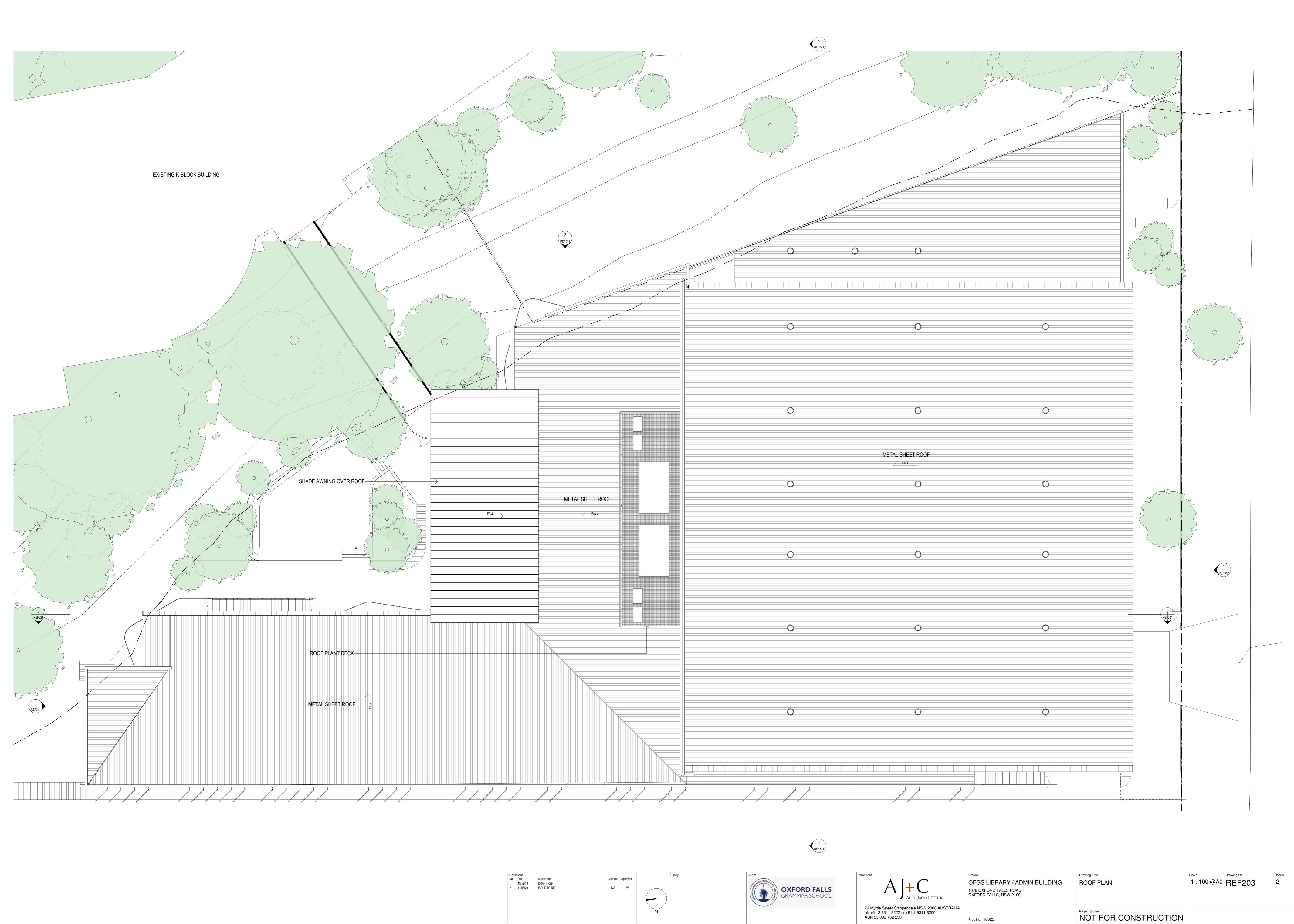
WS WALL STIFFENER

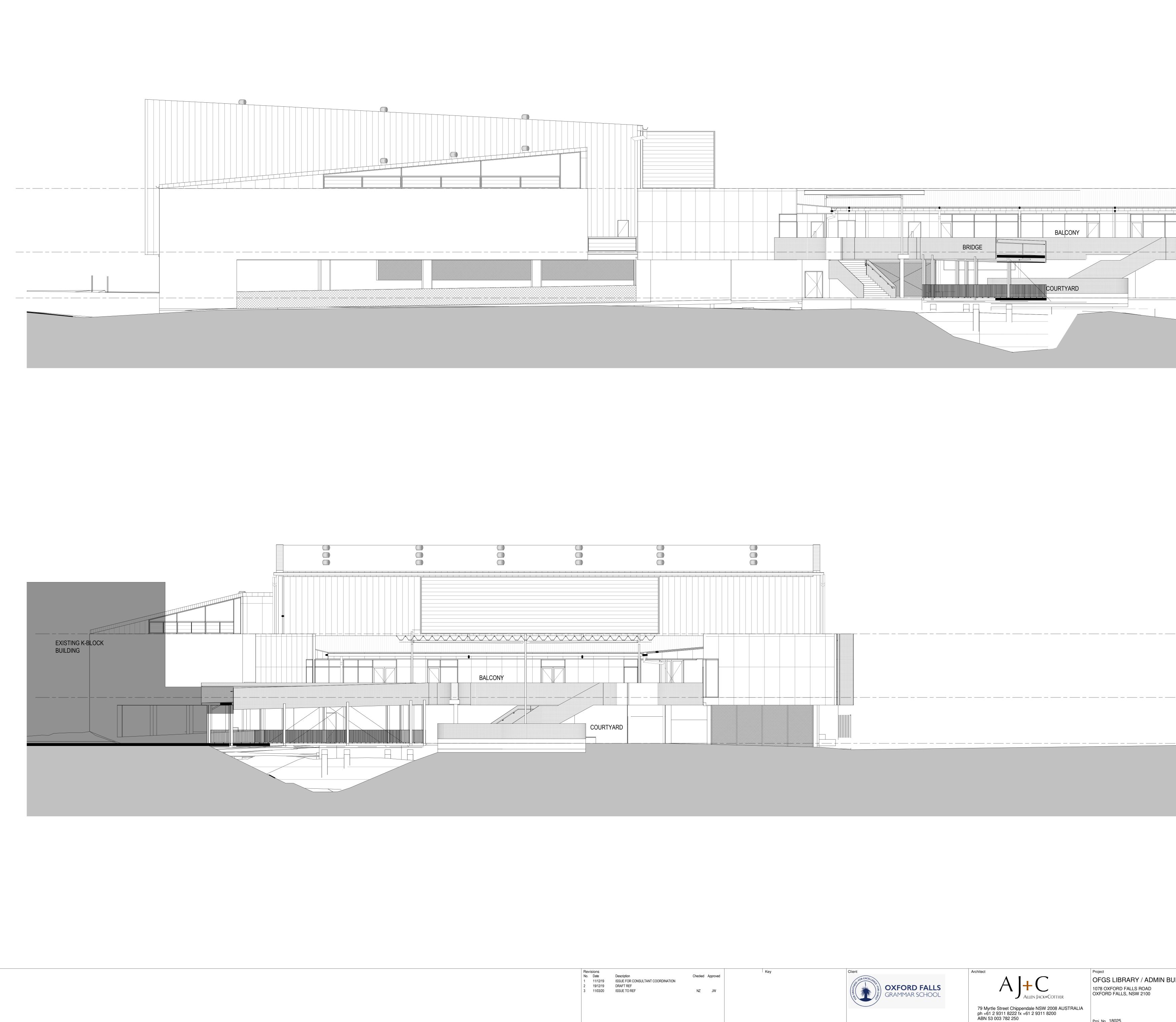
	Drawing Title	Scale	Drawing No.	Issue
UILDING	COVER SHEET		REF001	2
	Project Status			
	NOT FOR CONSTRUCTION			


Revisions No. Date 3 18/12/19 4 19/12/19	Description ISSUE FOR CONSULTANT COORDINATION DRAFT REF	Checked Approved	Key
5 11/03/20	ISSUE TO REF	NZ JW	$\left(\begin{array}{c} \end{array} \right)$
			N



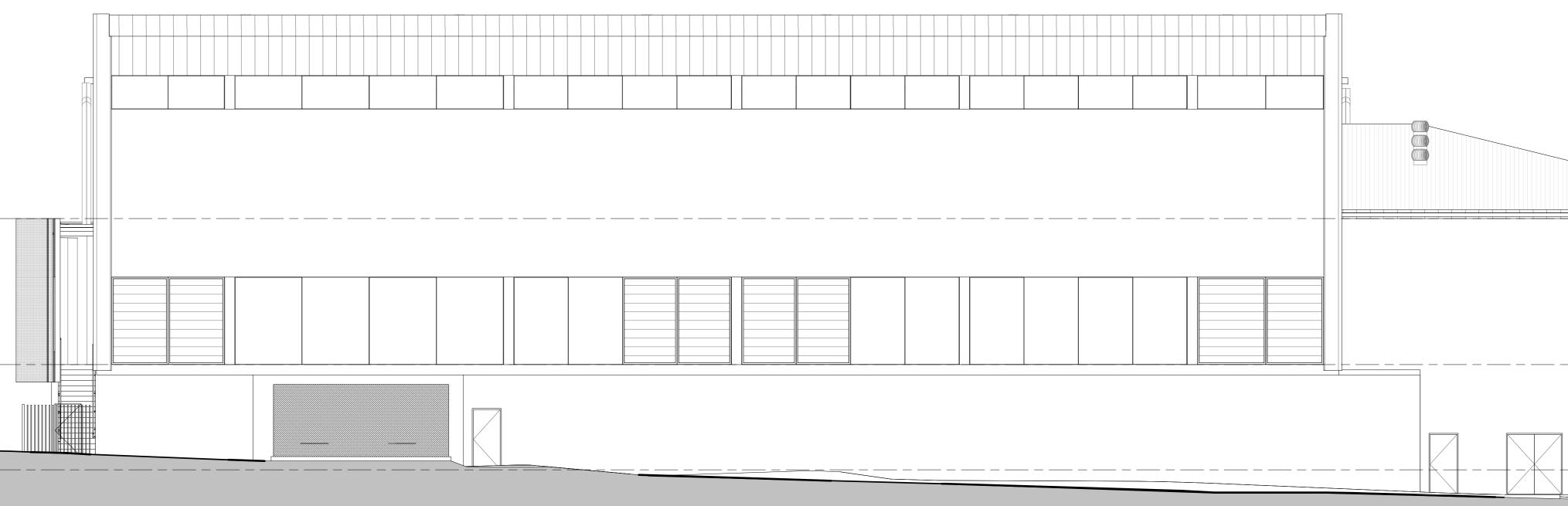
Project OFGS LIBRARY / ADMIN BU 1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100


	Drawing Title	Scale	Drawing No.	Issue
BUILDING	SITE PLAN	1 : 500 @A0	REF101	5
	Project Status NOT FOR CONSTRUCTION			


Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264, Peter Ireland 6661

	ion Checked Approved
3 19/12/19 DRAFT	
	3 19/12/19 DRAFT R

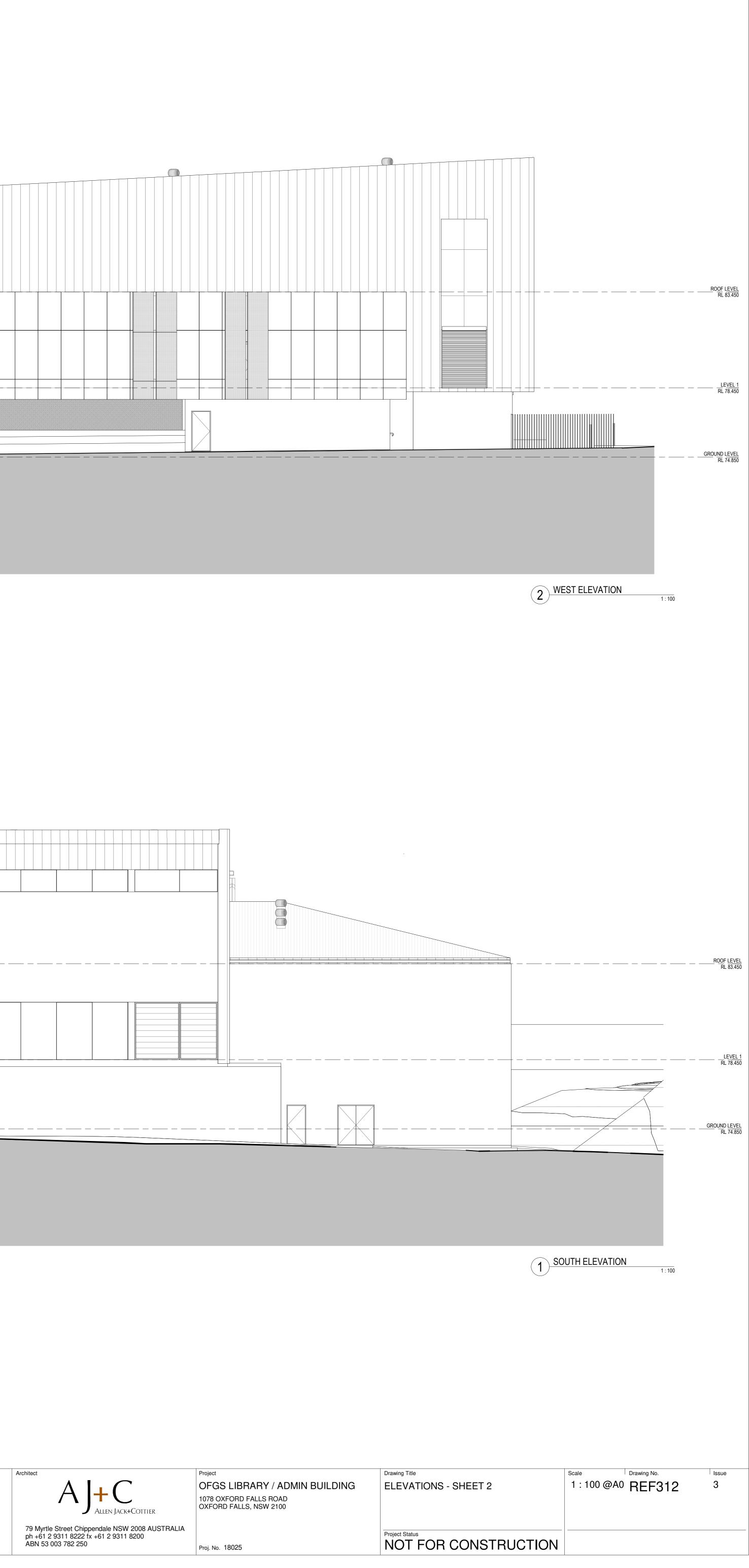
	Povisions			
	Revisions No. Date 1 19/12/19 2 11/03/20	Description DRAFT REF ISSUE TO REF	Checked Approved NZ JW	
Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Hee				N

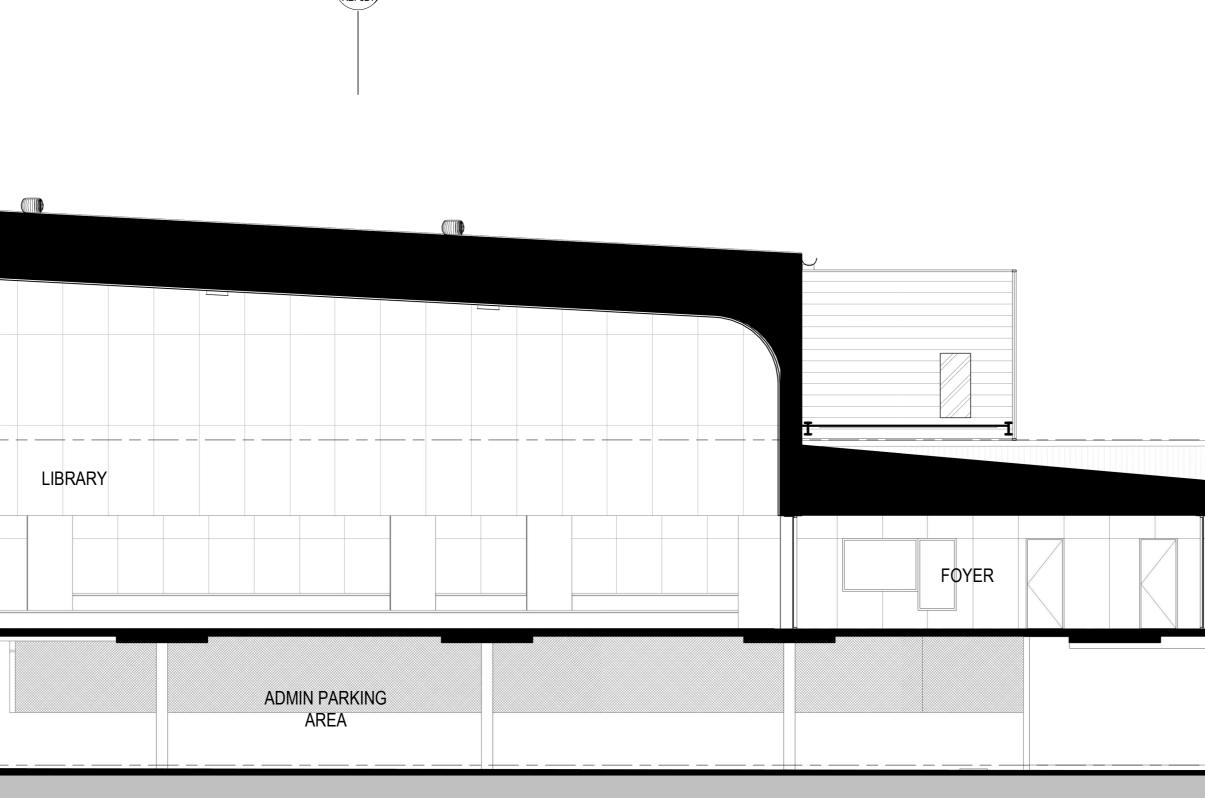

evisions					
0.	Date				
	11/12/19				
	19/12/19				
	11/03/20				

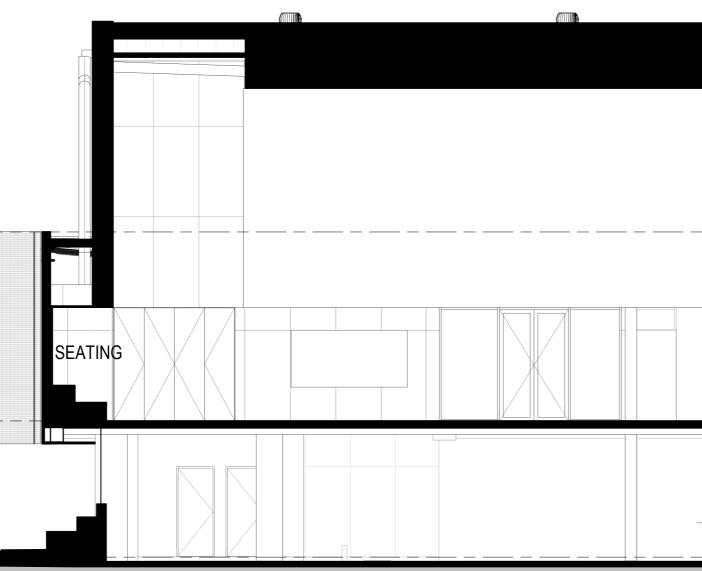
Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264, Peter Ireland 6661

					<u>ROOF LEVEL</u> RL 83.450
					<u>LEVEL 1</u> RL 78.450 <u>GROUND LEVEL</u> RL 74.850
		2 ^{E/}	AST ELEVATION	1 : 100	
		 			<u>ROOF LEVEL</u> <u>LEVEL 1</u> <u>RL 78.450</u>
		<u>1</u> <u>N</u>	ORTH ELEVATION	1 : 100	_GROUND LEVEL RL 74.850
UILDING	Drawing Title ELEVATIONS - SH Project Status NOT FOR CC	ΓΙΟΝ	Scale Drawing 1 : 100 @A0 RE	^{™0.} F311	Issue 3

e figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of an			Revisions No. Date 1 11/12/1 2 19/12/1 3 11/03/2	Description 19 ISSUE FOR CONSULTANT COORDINATIO 19 DRAFT REF 20 ISSUE TO REF	Checked Approved ON NZ JW	Кеу

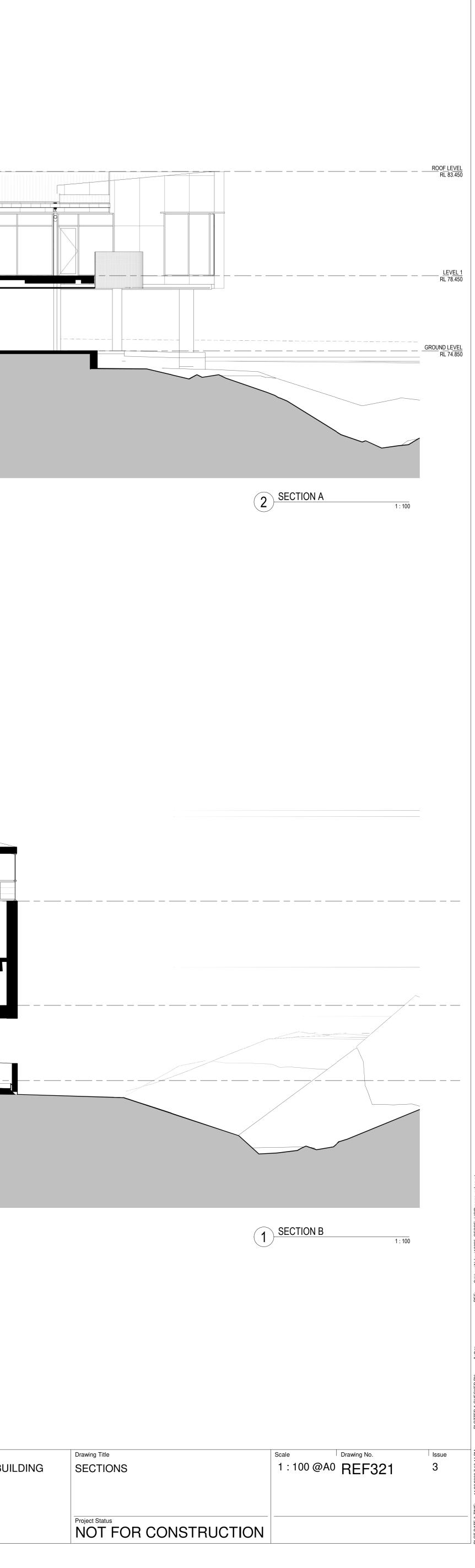




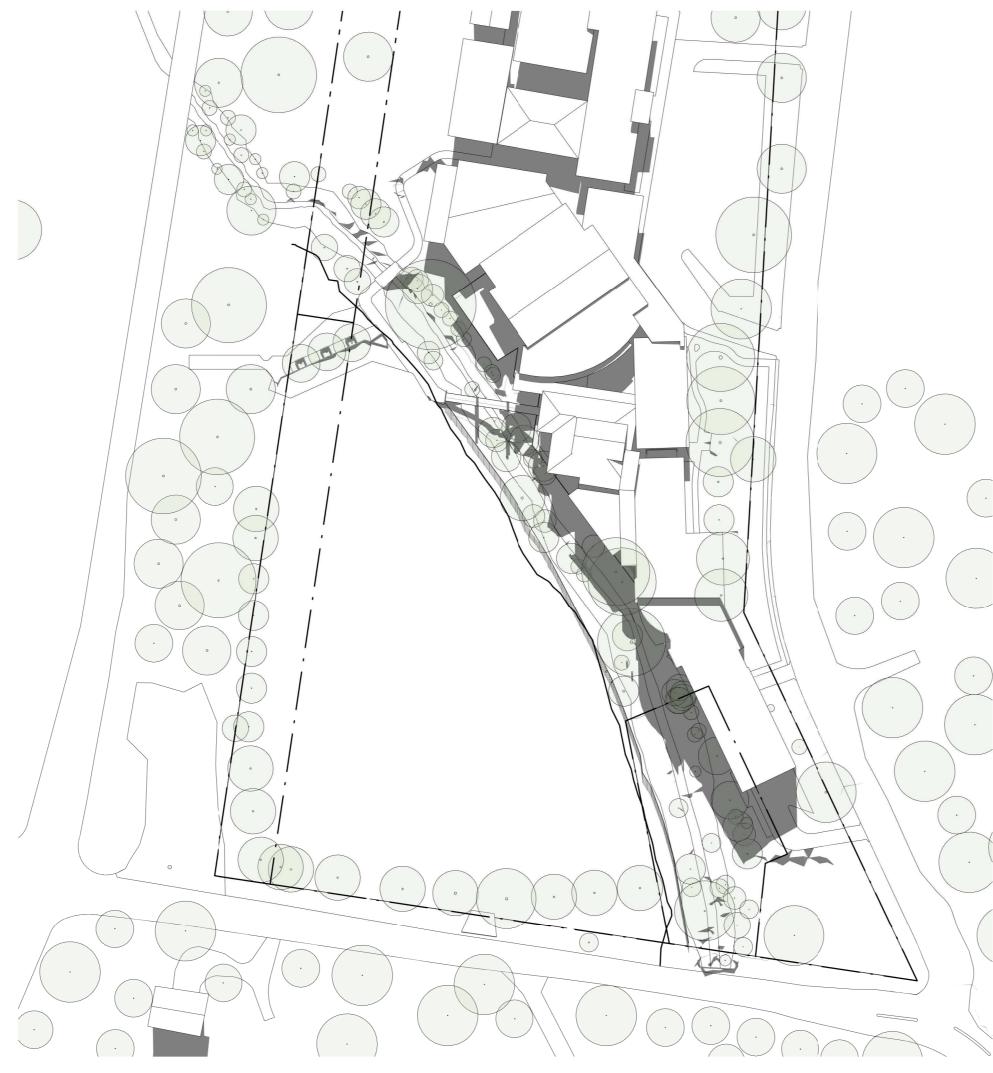

Project OFGS LIBRARY / ADMIN BUILDING 1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100

				1 REF321			
				ADMIN PARKING			
				AREA			
							REF321
					SEATING		
GROUND LEVEL							
Do not scale drawings. Use figured dimensions or	only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the	Tabrication of components. This drawing is the convrict of Allon Test - Cotting Architecture	nd is protected under the ConvrictM Act 1968. Do not alter, reproduce or transmit is an	form, or by any means without the express permission of Allen, how - Cation Architecter	2 19/12/19 DRAFT R 3 11/03/20 ISSUE TC	R CONSULTANT COORDINATION	Кеу

I	
BALCONY	
COURTYARD	

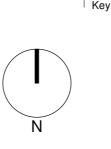

	 h		
			SEATING
ADMIN PARKING AREA			



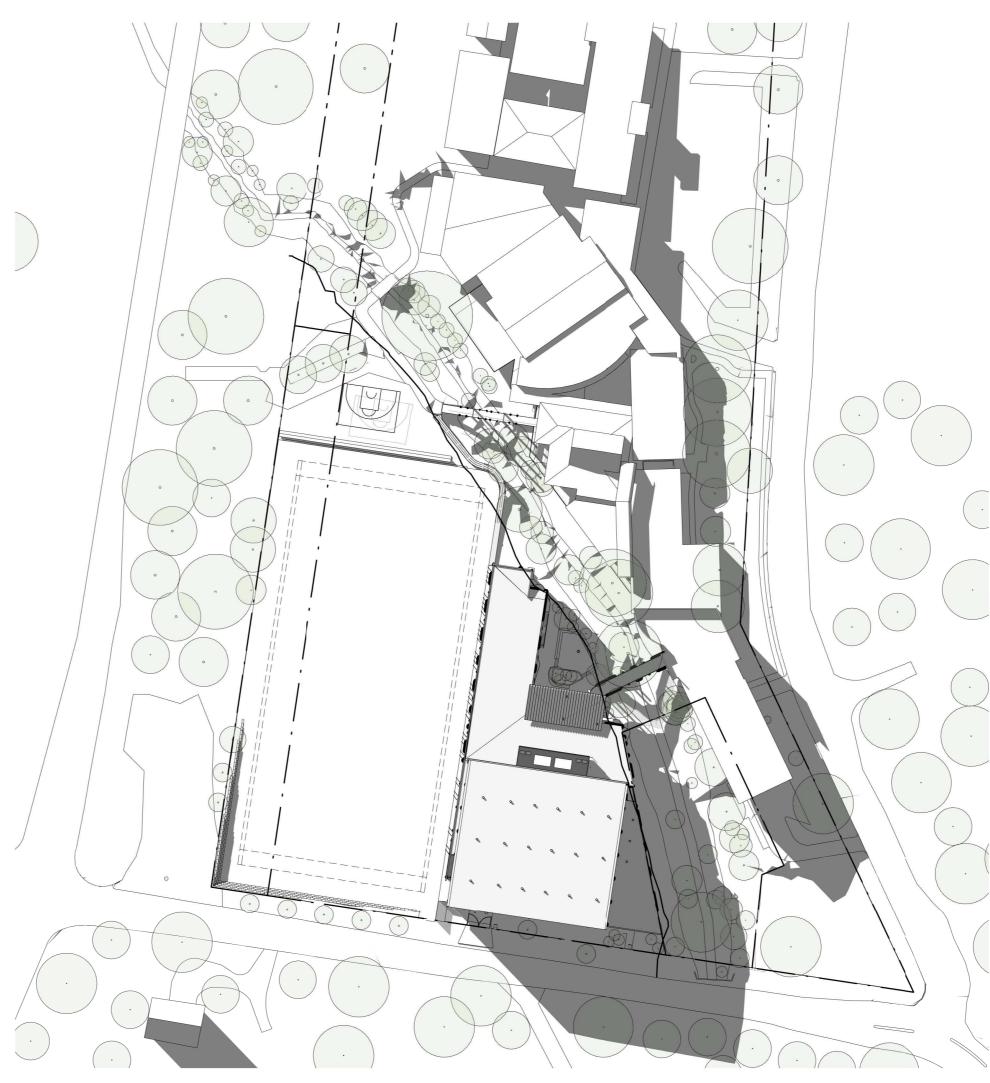


Project OFGS LIBRARY / ADMIN BUILDING 1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100

Proj. No. 18025



5 EXISTING - JUNE 21 12.00PM 1:1000


2 PROPOSED - JUNE 21 12.00PM 1:1000

Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264, Peter Ireland 6661

6 EXISTING - JUNE 21 3.00PM 1:1000

3 PROPOSED - JUNE 21 3.00PM 1:1000

Project OFGS LIBRARY / ADMIN BU 1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100

Proj. No. 18025

C:\Users\Nzhao\18025_OFGSFieldOfDreams_nzh
REF:
3Y: Author
PLOTTED & CHECKED BY:
11/03/2020 7:11:00 PM
f date & time:

	Drawing Title	Scale	Drawing No.	Issue
BUILDING	SHADOW DIAGRAMS	1 : 1000 @A0	REF401	2
	Project Status NOT FOR CONSTRUCTION			

5 PERSPECTVE FROM PROPOSED FIELD

2 PERSPECTIVE FROM BALCONY TO COURTYARD

Key

	Revisions No. Date 1 19/12/19 2 11/03/20	Description DRAFT REF ISSUE TO REF	Checked Approved NZ JW
Do not scale drawings. Use figured dimensions only. Check & verify levels and dimensions on site prior to the commencement of any work, the preparation of shop drawings or the fabrication of components. This drawing is the copyright Act 1968. Do not alter, reproduce or transmit in any form, or by any means without the express permission of Allen Jack + Cottier Architects. Nominated Architects: Michael Heenan 5264,	Peter Ireland 6661		

Project OFGS LIBRARY / ADMIN BU 1078 OXFORD FALLS ROAD OXFORD FALLS, NSW 2100

Proj. No. 18025

1 PERSPECTIVE FROM DREADNOUGHT ROAD

3 PERSPECTIVE FROM K-BLOCK

	Drawing Title	Scale	Drawing No.	Issue
JILDING	PERSPECTIVES		REF601	2
	Project Status NOT FOR CONSTRUCTION			

Attachment C: EIS Waste Classification Assessment and

ENVIRONMENTAL INVESTIGATION SERVICES

15/11/2017 Report Ref: E30807KMlet-WC_rev1

Oxford Falls Grammar School 1078 Oxford Falls Road OXFORD FALLS NSW 2100

Attention: Mr Greg Morris

WASTE CLASSIFICATION ASSESSMENT AND SOIL SUITABILITY ANALYSIS PROPOSED PLAYING FIELD DEVELOPMENT OXFORD FALLS GRAMMAR SCHOOL

1 INTRODUCTION

Oxford Falls Grammar School ('the client') commissioned Environmental Investigation Services (EIS)¹ to assign a waste classification and conduct a soil suitability analysis of in-situ soil located at the playing fields at Oxford Falls Grammar School, 1078 Oxford Falls Road, Oxford Falls ('the site'). The site location is shown on Figure 1 and sampling for the assessment was confined to the in-situ soil in the investigation area as shown on Figure 2 attached in the appendices.

The purpose of this assessment was to:

- i. provide a waste classification for the off-site disposal of the material in accordance with the NSW EPA Waste Classification Guidelines Part 1: Classifying Waste (2014²); and
- ii. assess the suitability of the soil for growing grass on the oval.

The assessment was undertaken generally in accordance with an EIS proposal (Ref: EP45494KM) of 8 August 2017 and written acceptance from Oxford Falls Grammar School of 14 August 2017.

A geotechnical investigation was undertaken in conjunction with the waste classification assessment by JK Geotechnics³ and the results are presented in a separate report (Ref. 30807SYrpt, dated 23 October 2017).

³ Geotechnical consulting division of J&K

¹ Environmental consulting division of Jeffery & Katauskas Pty Ltd (J&K)

² NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste*. (referred to as Waste Classification Guidelines 2014)

1.1 <u>Proposed Development Details</u>

The proposed development includes:

- Construction of a sporting facility building located in the south-eastern corner of the oval adjacent to the creek. The building will have a basement car park, which may require excavation to maximum depths of approximately 3m. A new vehicular access way to the building is proposed adjacent to Dreadnought Road;
- Expansion and reorientation of the existing sports field. The new sports field will occupy the
 existing field and will extend further west to accommodate the sports facility building in the
 south-east. The new oval will be at approximately the same surface level as the existing oval.
 Within the footprint of the existing oval this will require some cutting into the embankment
 along the southern and western boundaries of the site. It is expected that maximum cut
 depths may be in the order of approximately 3m; and
- Footbridges are proposed over the existing creek providing pedestrian access from the main school buildings to the proposed new sports facilities and oval.

2 SITE INFORMATION

2.1 Site Identification and Description

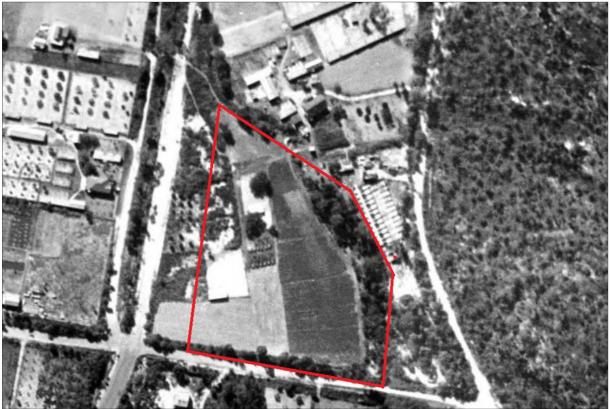
Table 2-1: Site Identification

Site Address:	1078 Oxford Falls Road, Oxford Falls, NSW, 2100
Lot & Deposited Plan:	Part of Lot 1 DP1046451
Current Land Use:	Sports oval
Area Applicable to Waste Classification:	Approximately 10,000m ²
Geographical Location (approx.):	Latitude: -33.739114°; Longitude: 151.24546°

A site inspection was conducted during the fieldwork on 25 and 26 September 2017. The school was located within undulating topography. A creek ran through the school grounds in a north-westerly to south-easterly direction.

The site was bound by Dreadnought Road to the south and the creek to the north-east. The site comprised a sports oval which was located in the south-western corner of the school grounds. The oval was relatively flat and appeared to have been formed by a cut along the western edge and filling along the eastern side, closer to the creek. Batters were located along the western and north-western sides of the oval.

A gravel surfaced car park was located at the top of the batter on the western side of the oval. School buildings were located on the eastern side of the creek. A seating area and several small to medium sized trees were located to the north of the oval.


Wakehurst Parkway was located beyond the gravel car park on the western side of the oval. Oxford Falls Road was located on the eastern side of the school buildings to the east of the site.

2.2 <u>Background/Historical Information</u>

EIS has undertaken a preliminary historical assessment based on a review of the following information:

- The 1943 aerial photograph for the site provided by SIX Maps⁴;
- The contaminated land records provided by the NSW EPA⁵; and
- Historical information from the school's website.

The 1943 aerial photograph indicated that the site was used for agricultural purposes at that time. The site area appeared to be divided into several fields or paddocks used for a variety of purposes. A copy of the photograph is reproduced below in Plate 1.

Plate 1: 1943 aerial photograph, showing the approximate location of the current school oval and assessment area outlined in red (Six Viewer - https://maps.six.nsw.gov.au, accessed on 19 October 2017)

There were no records for the site on the NSW EPA contaminated land registers.

Information from the school's website⁶ indicated that the school was constructed in the early 1980s and officially opened in 1984.

⁴ <u>https://maps.six.nsw.gov.au/</u>

⁵ <u>http://www.epa.nsw.gov.au/</u>

⁶ <u>http://www.ofgs.nsw.edu.au/about</u>

Considering the above information, the waste classification assessment will consider a broad suite of potential contaminants as outlined in Section 4.4.

2.3 <u>Regional Geology</u>

The geological map of Sydney (1983⁷) indicates the site to be underlain by Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses.

3 ASSESSMENT CRITERIA

3.1 NSW EPA Waste Classification Guidelines

Off-site disposal of fill, contaminated material, stockpiled soil, natural soil and rock excavated as part of the proposed development works is regulated by the Protection of the Environment Operations Act (1997⁸) and associated regulations and guidelines including Part 1 of the Waste Classification Guidelines.

Soils are classed into the following categories based on the chemical contaminant criteria outlined in the guidelines:

Category	Description
General Solid Waste (non-	• If Specific Contaminant Concentration (SCC) ≤ Contaminant
putrescible) (GSW)	Threshold (CT1) then Toxicity Characteristics Leaching Procedure
	(TCLP) not needed to classify the soil as GSW
	• If TCLP \leq TCLP1 and SCC \leq SCC1 then treat as GSW
Restricted Solid Waste (non-	• If SCC \leq CT2 then TCLP not needed to classify the soil as RSW
putrescible) (RSW)	• If TCLP \leq TCLP2 and SCC \leq SCC2 then treat as RSW
Hazardous Waste (HW)	• If SCC > CT2 then TCLP not needed to classify the soil as HW
	• If TCLP > TCLP2 and/or SCC > SCC2 then treat as HW

Table 3-1: Waste Categories

⁷ 1:100,000 Geological Map of Sydney (Series 9130), Department of Mineral Resources (1983) [now Department of Primary Industries]

⁸ NSW Government, (1997). Protection of Environment Operations Act. (POEO Act 1997)

Category	Description
Virgin Excavated Natural	Natural material (such as clay, gravel, sand, soil or rock fines) that meet
Material (VENM)	the following criteria:
	• That has been excavated or quarried from areas that are not
	contaminated with manufactured chemicals, or with process
	residues, as a result of industrial, commercial mining or agricultural
	activities;
	• That does not contain sulfidic ores or other waste; and
	Includes excavated natural material that meets such criteria for
	virgin excavated natural material as may be approved from time to
	time by a notice published in the NSW Government Gazette.

4 INVESTIGATION PROCEDURE

4.1 Subsurface Investigation and Soil Sampling

Field work for this investigation was undertaken on 25 and 26 September 2017. Soil samples for the waste classification assessment were obtained from eleven of the twenty-one boreholes drilled for the JK geotechnical investigation. The borehole locations are shown on Figure 2 attached in the appendices.

The sample locations were drilled using a truck-mounted hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler.

Soil samples were collected from the fill and natural profiles encountered during the investigation. All samples were recorded on the borehole logs attached in the appendices.

Samples were placed in glass jars with plastic caps and Teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. Sampling personnel used disposable nitrile gloves during sampling activities. The samples were labelled with the job number, sampling location, sampling depth and date.

4.2 <u>Screening for Volatile Organic Compounds (VOCs)</u>

A photoionisation detector (PID) was used to screen the samples for the presence of VOCs. PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases.

The sensitivity of the PID is dependent on the organic compound and varies for different mixtures of hydrocarbons. Some compounds give relatively high readings and some can be undetectable even though present in identical concentrations. The PID is best used semi-quantitatively to compare samples contaminated by the same hydrocarbon source. The PID is calibrated before use by

measurement of an isobutylene standard gas. All the PID measurements are quoted as parts per million (ppm) isobutylene equivalents.

4.3 <u>Sample Preservation</u>

Soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with AS4482.1-2005 and AS4482.2-1999⁹, as summarised in the following table:

Analyte	Preservation	Storage
Heavy metals	Unpreserved glass jar with Teflon lined lid	Store at <4°, analysis within 28 days (mercury and Cr[VI]) and 180 days (other metals)
Hydrocarbons, pesticides and other organics	As above	Store at <4°, analysis within 14 days
Asbestos	Sealed plastic bag	None

Table 4-1: Soil Sample Preservation and Storage

On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA-registered laboratory for analysis under standard Chain of Custody (COC) procedures.

4.4 Laboratory Analysis for Waste Classification Assessment

Selected samples were analysed for a range of potential contaminants based on the site information presented in Section 2. EIS note that a detailed site history assessment was not undertaken, however this was compensated for by analysing the samples for a broad range of potential contaminants.

Fifteen selected in-situ soil samples were analysed for the following:

- heavy metals including: arsenic, cadmium, chromium (total), copper, lead, mercury, nickel and zinc;
- polycyclic aromatic hydrocarbons (PAHs);
- total recoverable hydrocarbons (TRH); and
- monocyclic aromatic hydrocarbons including benzene, toluene, ethylbenzene and xylene (BTEX).

Ten of the samples were also analysed for asbestos.

Five of the samples were also analysed for:

- organochlorine pesticides (OCPs);
- organophosphate pesticides (OPPs); and

⁹ Guide to the Sampling and Investigation of Potentially Contaminated Soil Part2: Volatile Substances, Standards Australia, 1999 (AS 1999)

polychlorinated biphenyls (PCBs);

Samples were analysed by Envirolab Services (NATA Accreditation Number – 2901) using the analytical methods detailed in the National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013¹⁰). Reference should be made to the laboratory report (Ref: 176661) attached in the appendices for further information.

4.5 Laboratory Analysis for Soil Suitability Analysis

Three soil samples, collected at a variety of depths from BH1, BH4 and BH7 were analysed for a range of parameters to assess the soil's suitability for growing turf on a school oval. The analysis included:

- pH;
- electrical conductivity;
- organic matter;
- cation exchange capacity;
- nitrate;
- phosphate;
- potassium;
- sulphate;
- calcium;
- magnesium;
- iron;
- manganese;
- zinc;
- copper and
- boron.

5 **RESULTS OF THE INVESTIGATION**

5.1 Subsurface Conditions

A summary of the subsurface soil conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Description (depth in m below ground level)
Fill material was encountered in all boreholes and extended to depths ranging from 0.1n
to 3.5m. The fill typically comprised silty sand, sand and sandy clay, with sandstone gravel
cobbles and boulders. Traces of bricks, timber, plastic and string were encountered in som
boreholes.
t

Table 5-1: Summary of Subsurface Conditions

¹⁰ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

Profile	Description (depth in m below ground level)
	Odours or staining were not observed in the fill during the investigation. Potential asbesto containing material was not observed.
	The attached Figure 2 shows the depth of fill material in each borehole, and a contour plan showing the approximate depth of fill across the site. The contours should be regarded a approximate only.
Natural Soil	Natural alluvial soils were encountered below the fill material, and comprised sands, clayer sands and sandy clays.
	Odours or staining were not observed in the natural soils during the investigation.
Bedrock	Weathered sandstone bedrock was encountered in several boreholes at depths ranging from 3.3m to 4.8m.
	Odours or staining were not observed in the bedrock during the investigation.
Groundwater	Groundwater seepage was encountered during drilling at depths ranging from 3.0m to 5.0m. On completion of drilling groundwater was measured at depths ranging from 2.8m to 4.5m. At the time of drilling the groundwater levels had not had time to stabilise and therefore may be artificially higher. No longer-term groundwater monitoring was carried out.

5.2 VOC Screening

PID soil sample headspace readings are presented in the COC documents attached in the appendices. All results were 0ppm equivalent isobutylene which indicates a lack of PID-detectable VOCs.

5.3 Laboratory Results – Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Part 1 of the Waste Classification Guidelines. The results are summarised in Table A which is attached in the appendices. A summary of the results is presented below.

Analyte	No. of Samples	No. of Results	No. of Results >	Comments
	Analysed	> CT1 Criteria	SCC1 Criteria	
Heavy Metals	15	0	0	All results were below the CT1 and SCC1 criteria.
TRH	15	0	0	All results were below the laboratory practical quantitation limits (PQLs).

Table 5-2: Summary of Soil Laboratory Results Compared to Waste Classification Criteria

Analyte	No. of Samples	No. of Results	No. of Results >	Comments
	Analysed	> CT1 Criteria	SCC1 Criteria	
BTEX	15	0	0	All results were below the laboratory PQLs.
Total PAHs	15	0	0	All results were below the CT1 and SCC1 criteria.
Benzo(a)pyrene	15	0	0	All results were below the CT1 and SCC1 criteria.
OCPs & OPPs	5	0	0	All results were below the laboratory PQLs.
PCBs	5	0	0	All results were below the laboratory PQLs.
Asbestos	10	-	-	Asbestos was not detected in the samples analysed.

5.4 Statistical Analysis

95% Upper Confidence Limits (UCLs) of the mean were calculated for all analytes that were detected at concentrations above the laboratory PQLs, which included arsenic, chromium, copper, lead, nickel, zinc, total PAHs and benzo(a)pyrene. All 95% UCLs were below the corresponding CT1 criterion. The UCL calculations are included in Appendix F.

5.5 Laboratory Analysis – Soil Suitability Assessment

The analytical results of the soil suitability assessment are contained in the attached appendices. A summary of the results is presented below:

- The sample from BH1, collected from a depth of 0.0m to 0.2m, had a low effective cation exchange capacity (eCEC) indicating poor nutrient retention. It was recommended that nitrate, potassium and sulphate be boosted. Once compacted through pedestrian traffic, it was expected that the soil would become waterlogged and turf growth would fail;
- The sample from BH4, collected from a depth of 0.5m to 0.95m, had a low eCEC indicating poor nutrient retention. It was recommended that all nutrients be boosted with the exception of phosphorus. Once compacted through pedestrian traffic, it was expected that the soil would become waterlogged and turf growth would fail;
- The sample from BH7, collected from a depth of 0.0m to 0.2m, had a low eCEC indicating poor nutrient retention. It was recommended that all nutrients be boosted with the exception of phosphorus. The soil in this sample was considered to be the most suitable for growing turf.

6 <u>CONCLUSIONS</u>

6.1 Waste Classification of Fill

Based on the results of the assessment, and at the time of reporting, the fill material is classified as **General Solid Waste (non-putrescible)**. Surplus fill should be disposed of to a landfill that is licensed by the NSW EPA to receive this waste stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation.

6.2 Classification of Natural Soil and Bedrock

Based on the scope of work undertaken for this assessment, and at the time of reporting, EIS are of the opinion that the natural soil and bedrock at the site meets the definition of **VENM** for off-site disposal or re-use purposes. VENM is considered suitable for re-use on-site, or alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material. In accordance with Part 1 of the Waste Classification Guidelines, the VENM is pre-classified as general solid waste and can also be disposed of accordingly to a facility that is licensed to accept it.

6.3 <u>Recommendations of the Waste Classification Assessment</u>

Any unexpected finds encountered during the site works should be inspected by a suitably qualified environmental consultant¹¹. In the event that the find has the potential to alter the waste classification documented in this report, additional testing and reporting should be undertaken.

6.4 <u>Conclusions of the Soil Suitability Assessment</u>

Detailed recommendations for each of the three sample locations are contained in the report attached in Appendix E. A summary of the recommendations is provided below.

It is recommended that fertiliser be added to the soil to boost nutrients. The nutrient requirements are likely to vary depending on the location of the soil.

It is recommended that the soil in the vicinity of sample locations BH1 and BH4 be capped with approximately 100mm of imported 80/20 media (a blend of 80% sand and 20% soil). Alternatively the soil from the vicinity of sample BH7 could be used as a capping material.

6.5 <u>General Information</u>

If disposed off-site, the fill material must be disposed of to a facility licensed by the NSW EPA to accept the waste. It is the responsibility of the receiving facility to ensure that the material meets their EPA license conditions. EIS accepts no liability whatsoever for illegal or inappropriate disposal of material.

¹¹ The consultant should be from a company that is a member of the Australian Contaminated Land Consultants Association (ACLCA).

Fill and contaminated soil disposal costs are significant and may affect project viability. These costs should be assessed at an early stage of the project development to avoid significant future unexpected additional costs.

Material classed as VENM must not be mixed with any fill material (including building rubble) as this will invalidate the VENM classification. Where doubt exists about the difference between fill and VENM material an environmental/geotechnical engineer should be contacted for advice.

Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner. EIS accepts no liability whatsoever for the unlawful disposal of any waste from any site.

7 <u>LIMITATIONS</u>

The report limitations are outlined below:

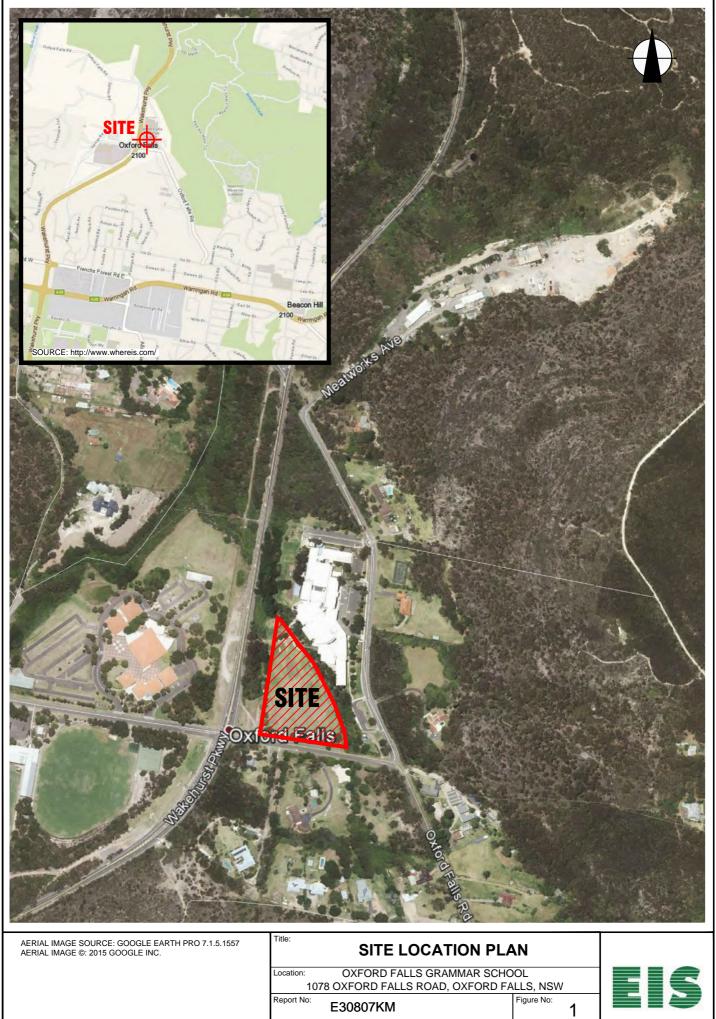
- EIS accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the EIS proposal; and terms of contract between EIS and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, EIS has not undertaken any verification process, except where specifically stated in the report;
- EIS has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- EIS accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;

- EIS have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or land use. EIS should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa;
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose;
- Copyright in this report is the property of EIS. EIS has used a degree of care, skill and diligence normally exercised by consulting professionals in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report;
- If the client, or any person, provides a copy of this report to any third party, such third party must not rely on this report except with the express written consent of EIS; and
- Any third party who seeks to rely on this report without the express written consent of EIS does so entirely at their own risk and to the fullest extent permitted by law, EIS accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

If you have any questions concerning the contents of this letter please do not hesitate to contact us.

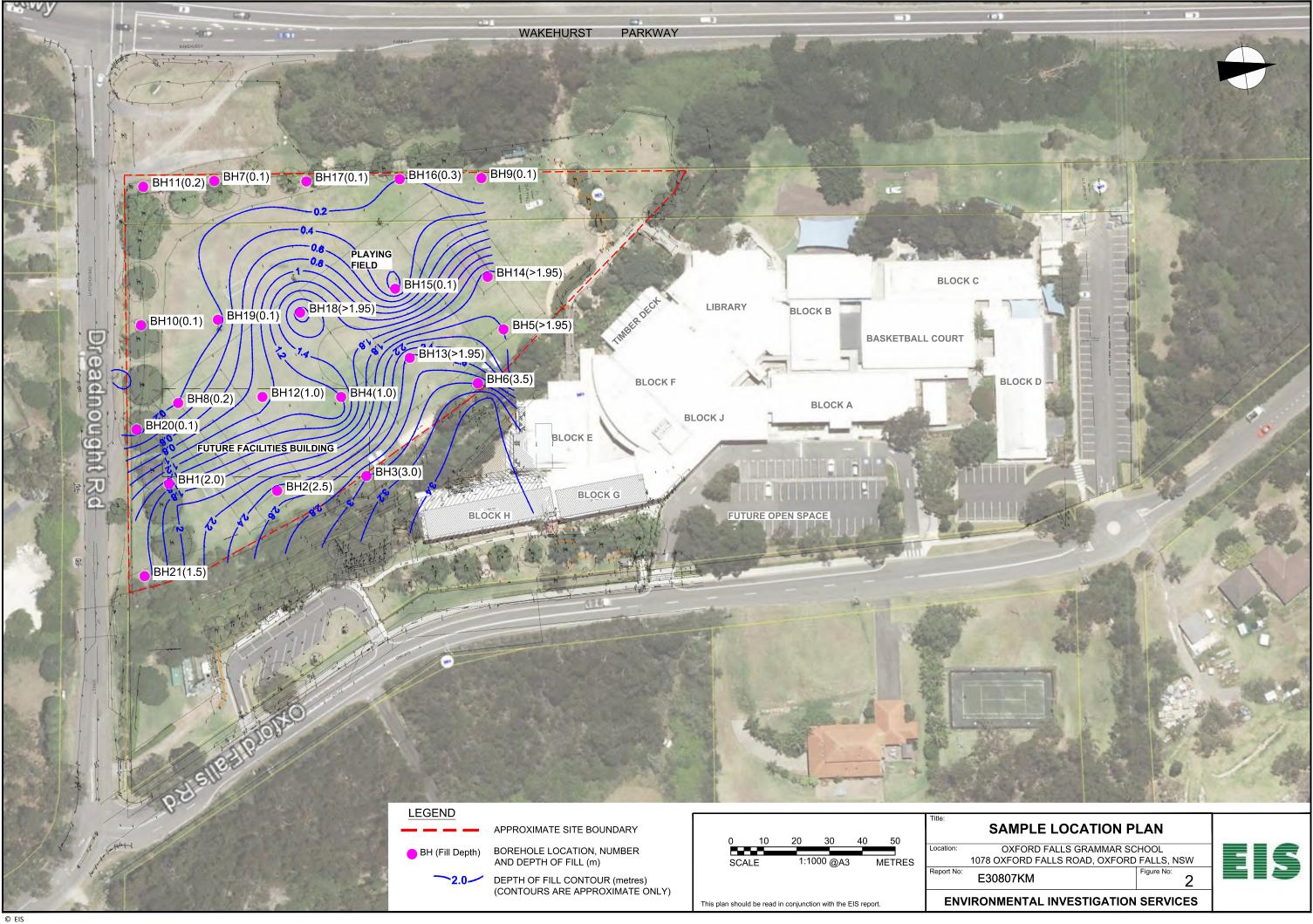
Kind Regards

Rob Muller Senior Environmental Scientist


Adrian Kingswell Principal

Appendices:

Appendix A: Report Figures Appendix B: Laboratory Summary Table Appendix C: Borehole Logs Appendix D: Laboratory Report & COC Documents Appendix E: Soil Suitability Analysis Report and Recommendations Appendix F: UCL Calculations



Appendix A: Report Figures

ENVIRONMENTAL INVESTIGATION SERVICES

This plan should be read in conjunction with the EIS report.

Appendix B: Laboratory Summary Table

											SOIL LABC			RED TO WASTE (unless stated o	CLASSIFICATION GUI therwise	DELINES											
						HEAVY	METALS				PA	AHs		OC/OP	PESTICIDES		Total			TRH				BTEX CON	/POUNDS		
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P	Total Endosulfans	Chloropyrifos	Total Moderately Harmful ²	Total Scheduled ³	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl benzene	Total Xylenes	ASBESTOS FIBRES
PQL - Envirol	ab Services		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	250	0.2	0.5	1	3	100
General Solid	l Waste CT1 ¹		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	<50	<50	650		NSL		10,000	10	288	600	1,000	-
General Solid	Waste SCC1 ¹		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	<50	<50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted So	olid Waste CT2 ¹	1	400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	<50	<50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Sc	lid Waste SCC2	2 ¹	2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	<50	<50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
BH1	0.0-0.2	Fill: silty sand	6	LPQL	9	10	34	LPQL	3	79	0.3	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH1	2.0-2.5	Clayey sand	LPQL	LPQL	8	1	9	LPQL	2	13	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH2	0.0-0.2	Fill: silty sand	5	LPQL	7	18	23	LPQL	2	51	0.1	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH2	0.5-0.95	Fill: sand	5	LPQL	16	15	73	LPQL	2	63	1.4	0.1	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH3	0.0-0.2	Fill: silty sand	LPQL	LPQL	7	6	12	LPQL	2	31	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH6	0.0-0.2	Fill: silty sand	LPQL	LPQL	13	5	13	LPQL	1	39	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH6	3.0-3.45	Fill: sand	LPQL	LPQL	7	13	21	LPQL	2	100	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH9	0.0-0.2	Fill: silty sand	8	LPQL	13	29	56	LPQL	4	200	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH11	0.0-0.2	Fill: silty sand	LPQL	LPQL	9	12	25	LPQL	7	45	0.4	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH12	0.0-0.2	Fill: silty sand	5	LPQL	7	10	15	LPQL	2	42	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH13	0.5-0.95	Fill: sand	LPQL	LPQL	16	2	9	LPQL	2	21	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH16	0.0-0.2	Fill: silty sand	6	LPQL	12	31	36	LPQL	4	160	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH18	0.0-0.2	Fill: silty sand	LPQL	LPQL	6	13	13	LPQL	3	48	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH18	1.5-1.95	Fill: clayey sand	LPQL	LPQL	19	3	8	LPQL	2	220	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH19	0.0-0.2	Fill: silty sand	LPQL	LPQL	7	10	18	LPQL	3	49	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
Total Num	ber of samples		15	15	15	15	15	15	15	15	15	15	5	5	5	5	5	15	15	15	15	15	15	15	15	15	10
Maximum	Value		8	LPQL	19	31	73	LPQL	7	220	1.4	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NC
Sta	tistical Analysis	s on Fill Samples																									
Number of	Fill Samples ⁴		14	14	14	14	14	14	14	14	14	14	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Mean Valu	e ⁴		4.8	NC	10.6	12.6	25.4	NC	2.8	82	0.2	0.06	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Standard D	eviation ⁴		1.1	NC	4.2	8.6	18.9	NC	1.5	64.5	0.4	0.01	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
% UCL ⁴			95%	NC	95%	NC	95%	NC	95%	95%	95%	95%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
UCL Value	4		5.3	NC	12.6	NC	34.4	NC	3.5	129.7	0.4	0.06	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

TABLE A

Explanation:

- NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)

- Assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion

- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde

- Statistical calculation undertaken using ProUCL version 5.0 (USEPA). Statistical calculation has only been undertaken on fill samples

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2

Abbreviations:

PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL PID: Photoionisation Detector PCBs: Polychlorinated Biphenyls

UCL: Upper Level Confidence Limit on Mean Value NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria TRH: Total Recoverable Hydrocarbons

CT: Contaminant Threshold SCC: Specific Contaminant Concentration HILs: Health Investigation Levels NEPM: National Environmental Protection Measure BTEX: Monocyclic Aromatic Hydrocarbons

Appendix C: Borehole Logs

BOREHOLE LOG

Borehole No. 1 1/1

E 337534 N 6265349

-	ect:					G FACILITY, CARPARK AND		GFIE	LDS	
	ation:	0807SY				ROAD, OXFORD FALLS, NSW	/	P	.L. Surf	ace: 74.2m
	: 25-9				Weti	JK350			atum:	
Duit	. 20 0		Logged/Checked by: T.C./W.T.							
Groundwater Record	ES U50 DB DS AMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		N > 10 2,10/50mm REFUSAL	0 - - - 1 –			FILL: Silty sand, fine to medium grained, brown, with nedium to coarse grained sandstone gravel and cobbles, trace of roots, bricks, metal and plastic fragments.	M	0, 11		GRASS COVER MODERATE TO I 'TC' BIT RESISTANCE
			-			FILL: Sand, fine to medium grained, orange brown and dark grey, with fine to coarse grained sandstone gravel.				SOIL RESISTANC APPEARS MODERATELY
			2		SC	CLAYEY SAND: fine to medium grained, grey and orange brown.	Μ	(L)		- \ <u>COMPACTED</u> - ALLUVIAL
		N = 9 3,5,4	3 -			CLAYEY SAND: fine to coarse grained, grey and dark grey.		L		- - - -
AFTER 1 HR		N > 30 9,20,	4						-	
•		10/50mm REFUSAL	- 5 - - -		-	SANDSTONE: fine to coarse grained, grey.	XW DW	EL	-	LOW RESISTANC MODERATE TO I RESISTANCE
			- 6			END OF BOREHOLE AT 6.0m				

BOREHOLE LOG

Borehole No. 2 1/1

Proje Loca						G FACILITY, CARPARK AND I ROAD, OXFORD FALLS, NSW		G FIE	LDS				
	No. 30 : 25-9	0807SY)-17			Meth	lethod: SPIRAL AUGER JK350			R.L. Surface: 74.2m Datum: AHD				
					Logo	ged/Checked by: T.C./W.T.							
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
			0			FILL: Silty sand, fine to medium grained, dark brown.	М		-	GRASS COVER			
		N = 25 8,10,15	- - 1 — -			FILL: Sand, fine to coarse grained, dark brown, grey and orange brown, with clay and fine to medium grained sandstone gravel.			-	APPEARS WELL COMPACTED			
		N = 5 3,2,3	- - 2 -						-	APPEARS POORLY COMPACTED			
AFTER 1 HR			-		CL	SANDY CLAY: medium plasticity, brown.	MC≈PL	(F)	-	ALLUVIAL			
		N = 14 5,7,7	3		SP	SAND: fine to coarse grained, grey and orange brown, with clay.	Μ	MD					
		N > 25 8,15, 10/50mm	-		-	SANDSTONE: fine to coarse grained, grey and dark grey.	XW	EL	-				
		REFUSAL	5				DW	М		MODERATE TO H 'TC' BIT RESISTANCE			
			-			SANDSTONE: fine to medium grained, grey.			-	HIGH RESISTANC			
			6			END OF BOREHOLE AT 6.0m							

BOREHOLE LOG

4 Borehole No. 3 1/1

E 33753 N 6265408

Client: Projec Locati	:t:	PROP	POSE	D SPO	RTIN	IMAR SCHOOL G FACILITY, CARPARK AND I ROAD, OXFORD FALLS, NSW		g fie	LDS				
Job No Date:)807SY -17	SY Method: SPIRAL AUGER JK350 Logged/Checked by: T.C./W.T.						R.L. Surface: 73.7m Datum: AHD				
Groundwater Record ES	U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
		N = 4 2,2,2	0 -			FILL: Silty sand, fine to coarse grained, brown, with root fibres. FILL: Sandy clay, medium plasticity, red brown, fine to medium grained sand, trace of fine to coarse grained sandstone gravel, cobbles and boulders.	M MC≈PL			GRASS COVER APPEARS POORLY COMPACTED			
		N = 23 3,8,15	2 -		SC	FILL: Silty sand, fine to medium grained, orange brown, grey and brown, with fine to coarse grained sandstone gravel, cobbles and boulders, trace of brick. CLAYEY SAND: fine to coarse grained, grey.	M	MD		APPEARS WELL COMPACTED ALLUVIAL ORGANIC ODOUF			
AFTER 1 HR		N > 16 1,5,11/ _20mm REFUSAL	3 -		-	SANDSTONE: fine to medium grained, orange brown and grey.	DW	VL-L		- - - LOW 'TC' BIT RESISTANCE			
			4 -			SANDSTONE: fine to coarse grained, grey.		L-M		MODERATE - RESISTANCE			
			6			END OF BOREHOLE AT 6.0m		M		MODERATE TO H RESISTANCE			
			7	-						-			

JK Geotechnics

GEOTECHNICAL AND ENVIRONMENTAL ENGINEERS

BOREHOLE LOG

Borehole No. 4 1/1 E 337513

N 6265402 **Client: OXFORD FALLS GRAMMAR SCHOOL Project:** PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW Job No. 30807SY Method: SPIRAL AUGER **R.L. Surface:** 74.0m JK350 Date: 25-9-17 Datum: AHD Logged/Checked by: T.C./W.T. SAMPLES Hand Penetrometer Readings (kPa.) Unified Classification Groundwater Record Strength/ Rel. Density Moisture Condition/ Weathering Graphic Log Field Tests DESCRIPTION Depth (m) Remarks സ്പുന്ന GRASS COVER FILL: Silty sand, fine to medium Μ grained, brown and orange brown, trace of medium to coarse grained APPEARS sandstone gravel, cobbles and WELL boulders. N = 10COMPACTED FILL: Sandy clay, medium plasticity, 6,6,4 light brown mottled red and yellow brown, with medium to coarse grained SC Μ L sandstone gravel. ALLUVIAL CLAYEY SAND: fine to medium grained, grey mottled dark grey and orange brown. N = 8 3,4,4 2 3 MD N = 143,5,9 AFTER SP SAND: fine to coarse grained, orange W brown, with medium grained, sub 1 HR rounded to sub angular quartz gravel. N > 17 6,7,10/ 20mm REFUSAL 5 LOW TO MODERATE SANDSTONE: fine to coarse grained, DW L-M TC' BIT grey and orange brown. RESISTANCE END OF BOREHOLE AT 6.0m COPYRIGHT

BOREHOLE LOG

Borehole No. 5 1/1 E 337510

Client: Project: Location:	PROF	POSEI	O SPO	RTIN	IMAR SCHOOL G FACILITY, CARPARK AND I ROAD, OXFORD FALLS, NSW							
Job No. 3 Date: 25-				Meth	od: SPIRAL AUGER JK350		R.L. Surface: 73.6 Datum: AHD					
				Log	ged/Checked by: T.C./W.T.							
Groundwater Record ES DB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON OMPLET ION	N > 10 10/20mm REFUSAL N = 6 2,3,3	0 - - 1- - - -			FILL: Silty sand, fine to medium grained, brown, with root fibres, trace of medium to coarse grained sandstone gravel. FILL: Silty sand, fine to medium grained, orange brown, with fine to coarse grained sandstone gravel, cobbles and boulders.	M			GRASS COVER APPEARS POORLY TO MODERATELY COMPACTED			
		2 			END OF BOREHOLE AT 1.95m							

BOREHOLE LOG

K Borehole No. 6 1/1

Clier Proje Loca		PROF	OSE	D SPO	RTIN	IMAR SCHOOL G FACILITY, CARPARK AND I ROAD, OXFORD FALLS, NSW		G FIE	LDS	E 33751 N 626544			
	No. 3 : 25-	30807SY -9-17		Method: SPIRAL AUGER JK350 Logged/Checked by: T.C./W.T.					R.L. Surface: 73.6m Datum: AHD				
Groundwater Record	ES U50 DB SAMPLES	DS Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
			- 0			FILL: Silty sand, fine to coarse grained, brown, trace of fine to medium grained sandstone gravel. FILL: Sandstone boulder	M -			GRASS COVER			
		N = 15 4,11,4	1 - - 2 -			FILL: Silty sand, fine to coarse grained, brown, orange brown and grey, with fine to medium grained sandstone gravel, trace of timber and plastic fragments.	M			SOIL RESISTANCE APPEARS MODERATELY COMPACTED			
	T	N = 6 3,3,3	- - 3 - - -			FILL: Sand, fine to coarse grained, dark grey and orange brown, with string fibrefragments.				APPEARS POORLY COMPACTED ALLUVIAL			
		N = SPT 20/70mm	- 4 - -		-	SANDSTONE: fine to coarse grained, grey.	DW	(MD)	-	LOW 'TC' BIT RESISTANCE			
		REFUSAL	- 5 - -			END OF BOREHOLE AT 5.6m		M-H		HIGH RESISTANCI			
			6 — - -							_			

BOREHOLE LOG

Borehole No. 7 1/1 E 337443

Proje Loca						G FACILITY, CARPARK AND I ROAD, OXFORD FALLS, NSW		G FIE	LDS			
Job N Date:		0807SY)-17				od: SPIRAL AUGER JK350		R.L. Surface: 76.1m Datum: AHD				
					Logo	ged/Checked by: T.C./W.T.						
Groundwater Record	ES U50 DB DS DS AMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
ORY ON			0	KXXX	SP	FILL: Silty sand, fine to medium grained, brown, with root fibres.	M	MD		GRASS COVER		
ION			-			SAND: fine to coarse grained, orange brown, with clay.			-	ALLUVIAL		
		N = 12 4,6,6	-									
			1 -						-	-		
			-						-			
		N = 14	-						-			
		3,6,8	2 -						-	-		
			-						-			
					SC	CLAYEY SAND: fine to coarse			-			
			-			grained, grey, orange brown and red brown.			_			
		N = 17	3 -						-	-		
		7,7,10		1					-			
									-			
			4 -						-	-		
			-						-			
		N = 23	-		-	SANDSTONE: fine to coarse grained, grey, orange brown and red brown.	XW	EL		-		
		10,10,15	5 -			END OF BOREHOLE AT 4.95m			-	-		
			-									
			-									
			6 -									
			-	1						•		

BOREHOLE LOG

Borehole No. 8 1/1 E 337503

Proje Loca	ect: ation:					G FACILITY, CARPARK AND ROAD, OXFORD FALLS, NSV		G FIE	LDS		
	No. 30 : 26-9-				Meth	od: SPIRAL AUGER JK350		R.L. Surface: 74.3m Datum: AHD			
					Logo	ged/Checked by: T.C./W.T.					
Groundwater Record	ES U50 DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
			- 0			FILL: Silty sand, fine to medium grained, brown, yellow brown mottled red and light brown, with medium to coarse grained sandstone gravel and	М		-	GRASS COVER	
		N = 14 5,7,7	- - 1 –		SC	Cobbles. CLAYEY SAND: fine to coarse grained, grey.	M	MD	-	ALLUVIAL -	
		N = 14 5,6,8	2 -						-	-	
AFTER 1 HR		N = 21 10,11,10	- - - - -		sc_	CLAYEY SAND: fine to coarse grained, grey and orange brown.	-		-	-	
			- 4 - -	× 21	-	SANDSTONE: fine to coarse grained, grey.	DW	L-M	-	LOW 'TC' BIT RESISTANCE	
			5 - - -					M		MODERATE TO RESISTANCE	
						END OF BOREHOLE AT 6.0m					

JK Geotechnics

GEOTECHNICAL AND ENVIRONMENTAL ENGINEERS

BOREHOLE LOG

Borehole No. 9 1/1 E 337457

N 6265456 **Client: OXFORD FALLS GRAMMAR SCHOOL Project:** PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS Location: 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW Job No. 30807SY Method: SPIRAL AUGER **R.L. Surface:** 73.6m JK350 Date: 26-9-17 Datum: AHD Logged/Checked by: T.C./W.T. SAMPLES Hand Penetrometer Readings (kPa.) Unified Classification Groundwater Record Strength/ Rel. Density Graphic Log Moisture Condition/ Weathering Field Tests DESCRIPTION Depth (m) Remarks N R a DRY ON GRASS COVER FILL: Silty sand, fine to medium Μ COMPLETgrained, brown, with fine to coarse ION grained sandstone gravel. SC CLAYEY SAND: fine to medium Μ L ALLUVIAL grained, orange brown. N = 74,4,3 CLAYEY SAND: fine to coarse grained, grey and orange brown, trace of ironstone gravel. N = 73,4,3 2 END OF BOREHOLE AT 1.95m 3 4 5 6 COPYRIGHT

BOREHOLE LOG

4 Borehole No. 10 1/1 E 337478

Clier							IMAR SCHOOL				N 62653			
Proje							G FACILITY, CARPARK AND		GFIE	LDS				
Loca	ition	:	1078	UXFC		ALLS I	ROAD, OXFORD FALLS, NSV	V						
Job I	No.	308	807SY			Meth	od: SPIRAL AUGER	R.L. Surface: 75.8m						
Date	: 26	-9-	17				JK350	Datum: AHD						
						Logo	ged/Checked by: T.C./W.T.	1						
Groundwater Record	ES U50 SAMPLES		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON					<u>kxxx</u>		FILL: Silty sand, fine to coarse	D			GRASS COVER			
OMPLET ION	1-			-		SP	\grained, brown, with roots. / SAND: fine to coarse grained, orange brown, with clay.	M /,	L		ALLUVIAL			
			N = 9	-							-			
			3,4,5								-			
				-			CLAYEY SAND: fine to coarse	-			-			
				-			grained, orange brown and grey.				-			
			N = 10 3,4,6	-							-			
				2 –							_			
				-							-			
				-		SP	SAND: fine to coarse grained, grey,				-			
				-		35	orange brown and red brown.				-			
				3 –							_			
			N = 17 7,8,9	-							-			
				-							-			
				-							-			
				4		-	SANDSTONE: fine to coarse grained, orange brown.	XW-DW	EL-VL		VERY LOW TO LO - 'TC' BIT RESISTANCE			
				-			END OF BOREHOLE AT 4.5m							
				-							-			
				5 —							_			
				-							-			
				-							-			
				-							-			
				6 -							_			
				-							-			
				-							-			
				-							-			
				7							_			

BOREHOLE LOG

Borehole No. 11 1/1

										E 33744 N 626535		
Clier Proje Loca		PROF	POSE	D SPC	ORTIN	IMAR SCHOOL G FACILITY, CARPARK AND F ROAD, OXFORD FALLS, NSW		G FIE	LDS			
Job No. 30807SY Date: 26-9-17			Method: SPIRAL AUGER JK350						R.L. Surface: 77.0m Datum: AHD			
Groundwater Record	ES U50 DB SAMPLES	DS Field Tests	Depth (m)	Graphic Log	Unified Classification	ged/Checked by: T.C./W.T.	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
		N = 10	0		SC	FILL: Silty sand, fine to medium grained, brown, with roots. CLAYEY SAND: fine to coarse grained, orange brown.	D M	MD		GRASS COVER - ALLUVIAL		
		4,4,6				CLAYEY SAND: fine to coarse grained, orange brown and red brown.				-		
		N = 14 5,6,8	2 -							-		
AFTER		N = 20	3 -		SP	SAND: fine to coarse grained, red brown and grey.				-		
1 HR 		5,6,14	4 -			SAND: fine to coarse grained, red		(MD)		-		
					-	brown, with clay. SANDSTONE: fine to coarse grained, orange brown, grey and red brown.	XW	EL		- - VERY LOW TO LO 'TC' BIT - RESISTANCE		
			-			END OF BOREHOLE AT 5.5m	DW	L		LOW RESISTANC		
			- 6 -	-						- -		
				-						-		

BOREHOLE LOG

K Borehole No. 12 1/1 E 337510

-			PROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS 1078 OXFORD FALLS ROAD, OXFORD FALLS, NSW									
Job No. 30807SY Date: 26-9-17					Meth	nod: SPIRAL AUGER JK350	R.L. Surface: 74.3m Datum: AHD					
	1	1	Logged/Checked by: T.C./W.T.									
Groundwater Record	ES U50 DB DS AMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
			0			FILL: Silty sand, fine to medium grained, brown, with roots. FILL: Sand, fine to coarse grained, orange brown and grey, with clay,	M		-	GRASS COVER APPEARS WELL		
		N = 30 6,20,10		\bigotimes	-	trace of fine grained sandstone gravel			-	COMPACTED		
			-		SP	SAND: fine to coarse grained, grey and dark grey, trace of clay.	M	L	-	ALLUVIAL		
		N = 9 3,4,5	2 -						=	-		
			-			SANDY CLAY: medium plasticity,	MC≈PL	VSt	-			
		N = 7	3 -			grey, fine to coarse grained sand.			300	-		
AFTER 1 HR		2,3,4							350			
•	-		4 -			SANDSTONE: fine to coarse grained, orange brown and grey.		— EL		VERY LOW 'TC' BIT		
		N = 25 6,7,18	-						-	RESISTANCE		
			5 -							-		
			6			END OF BOREHOLE AT 6.0m						

BOREHOLE LOG

X Borehole No. 13 1/1 E 337501

										E 337 N 6265			
						IMAR SCHOOL		_					
-		POSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS											
Locat	tion:	1078	OXFC		ALLS	ROAD, OXFORD FALLS, NSV	V						
		0807SY	Method: SPIRAL AUGER						R.L. Surface: 74.0m				
Date:	26-9	9-17		JK350					Datum: AHD				
					Logé	ged/Checked by: T.C./W.T.							
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
ORY ON			0	\times		FILL: Silty sand, fine to coarse grained, brown, with roots.	M			GRASS COVER			
ION		N > 13 18,13/10mm REFUSAL	- - - 1 –			FILL: Sand, fine to coarse grained, orange brown and dark grey, with clay.				APPEARS MODERATELY COMPACTED			
		N = 13 7,6,7	-			FILL: Sand, fine to coarse grained, red brown and dark grey, with medium grained sandstone gravel.				- - -			
			2 -			END OF BOREHOLE AT 1.95m				-			
			-										
				-						-			
			3 -							-			
			-										
			4 -							-			
			-							-			
			-										
			5 -							-			
			-							-			
			-										
			6 -							-			
			-										
			7_							_			

BOREHOLE LOG

Borehole No. 14 1/1 E 337480

Clier											E 337 N 6265		
				DXFORD FALLS GRAMMAR SCHOOL									
-		ROPOSED SPORTING FACILITY, CARPARK AND PLAYING FIELDS 078 OXFORD FALLS ROAD, OXFORD FALLS, NSW											
LUCA		•	1076			ALLS	ROAD, OXFORD FALLS, NSV	v					
	Job No. 30807SY					Meth	od: SPIRAL AUGER JK350		R.L. Surface: 73.8m				
Date	: 26	-9-1	7						D	atum:	AHD		
						Logo	ged/Checked by: T.C./W.T.						
Groundwater Record	ES U50 DR SAMPLES		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON				0	\propto	00	FILL: Silty sand, fine to coarse	D	07 EL		GRASS COVER		
OMPLET ION				-	\bigotimes		\grained, brown, with root fibres.	M			- APPEARS		
			N = 10	-	\bigotimes		grey and brown, with medium to coarse grained sandstone gravel.				MODERATELY COMPACTED		
			2,2,8	-	\bigotimes								
				1-	\bigotimes		as above,	-			-		
				-			but with polystyrene fragments.				-		
			N = 14 6,7,7	-							-		
			0,7,7	2 -			END OF BOREHOLE AT 1.95m				_		
				-	-						-		
				-							-		
				-	-						-		
				3 -	-						_		
				-							-		
				-	-						-		
				-							-		
				4 -							-		
				-							-		
				-							-		
				5 -							-		
				-							-		
				-							-		
											-		
				6 -							_		
				-							-		
				-							-		
				-							-		
				7_									

BOREHOLE LOG

4 Borehole No. 15 1/1 E 337451

Clien	4.						IMAR SCHOOL				N 626			
										יחו				
Proje							G FACILITY, CARPARK AND							
Loca	tion	•	1078		IKU FA	ALLS	ROAD, OXFORD FALLS, NSW	V						
Job I	No.	308	07SY			Meth	od: SPIRAL AUGER		R	.L. Surf	ace: 74.0m			
Date	: 26	-9-1	7				JK350		D	atum:	AHD			
						Logo	ged/Checked by: T.C./W.T.							
Groundwater Record	ES U50 DR SAMPLES	S	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON			<u> </u>	0	KXXX		$_{\rm T}$ FILL: Silty sand, fine to coarse	M			GRASS COVER			
OMPLET ION				-		SP	\grained, brown, with roots.	M /	L		ALLUVIAL			
			N _ 0	-			brown, trace of clay.				-			
			N = 8 3,4,4	-							-			
				1 -		-sc	CLAYEY SAND: fine to coarse				_			
				-			grained, orange brown and grey.				-			
			N 40	-					MD		-			
			N = 10 3,4,6	-							-			
				2 -	z er mig.		END OF BOREHOLE AT 1.95m				_			
				-							-			
				-							-			
				-							-			
				3 –							_			
				-							-			
				-							-			
				-							-			
				4 -							_			
				-							-			
				-							-			
				-							-			
				5 -							_			
				-							-			
				-							-			
				-							-			
				6 -							_			
				-							-			
				-							-			
				-							-			
				7_										

BOREHOLE LOG

Borehole No. 16 1/1 E 337451

					0.5.44					E 33 N 626		
Clier						IMAR SCHOOL						
Proj∉						G FACILITY, CARPARK AND		GFIE	LDS			
Loca	ition:	1078	UXFC	JKD F/	ALLS	ROAD, OXFORD FALLS, NSV	IV					
Job I	No. 3	30807SY			Meth	od: SPIRAL AUGER		R	.L. Surf	ace: 73.7m		
Date	: 26-	9-17				JK350		D	atum:	AHD		
	1		1		Logo	ged/Checked by: T.C./W.T.						
Groundwater Record	ES U50 DB SAMPLES	DS Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON			0	\mathbb{X}		FILL: Silty sand, fine to coarse grained, brown, with roots.	M			GRASS COVER		
ION				$\sum_{i=1}^{n}$	SC	CLAYEY SAND: fine to coarse	М	L		ALLUVIAL		
		N = 8				grained, orange brown.			-			
		3,4,4	1-						-	-		
									-	-		
						CLAYEY SAND: fine to coarse		MD		-		
		N = 14 5,6,8				grained, orange brown and grey.				-		
			2 -			END OF BOREHOLE AT 1.95m				_		
										- -		
			3 -						-			
				-					-	-		
									-			
									-			
			4 -	-					-	_		
										-		
										-		
										-		
			5 -						-	_		
										- -		
				-								
										-		
			6 -							-		
			7							-		

BOREHOLE LOG

X Borehole No. 17 1/1 E 337449

01.0	1-									E 333 N 6265			
Clien						IMAR SCHOOL							
Proje Loca						G FACILITY, CARPARK AND ROAD, OXFORD FALLS, NSV		AYING FIELDS					
Loca	tion:	1078			V								
		0807SY			Meth		.L. Surf						
Date:	26-9	9-17				JK350		D	atum:	AHD			
					Logo	jed/Checked by: T.C./W.T.							
Groundwater Record	ES U50 SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON			0	XXX		FILL: Silty sand, fine to coarse	M	<u>о, т</u>		GRASS COVER			
OMPLET ION					SP	grained, brown, with root fibres.	М	L		ALLUVIAL			
		N = 7				brown, with clay.				-			
		3,3,4	- · ·							-			
										-			
			-		sc	CLAYEY SAND: fine to coarse		MD		-			
		N = 20 4,10,10	-			grained, red brown and grey.				-			
			2 -	•••• <i>*</i> .**		END OF BOREHOLE AT 1.95m		<u> </u>		_			
										- -			
										-			
										-			
			3 -							-			
			- 4							-			
										-			
										-			
			- -							-			
			5 -							_			
			· ·										
										-			
			6 -							_			
										-			
										-			
										-			

BOREHOLE LOG

4 Borehole No. 18 1/1 E 337482

	tion:									ace: 74.1m
Date	: 26-9	9-17			Log	JK350 jed/Checked by: T.C./W.T.		D	atum: /	AHD
Groundwater Record <u>U50</u> DB DS SAMPLES Field Tests			Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
ory on Omplet Ion			0			FILL: Silty sand, fine to coarse grained, brown, with root fibres. FILL: Clayey sand, fine to coarse grained, orange brown.	M		-	GRASS COVER APPEARS WELL
		N = 17 20,11,6	1-							COMPACTED
		N = 1 0,0,1				FILL: Clayey sand, fine to coarse grained, grey and brown, timber and plastic fragments.				APPEARS POORLY
		0,0,1	2 -			END OF BOREHOLE AT 1.95m				COMPACTED
			3 -	-					-	-
			4 -	-					-	-
			5 -	-						-
			- - - -	-						
			6 -							-

BOREHOLE LOG

Borehole No. 19 1/1 E 337480

										E 337 N 6265			
Clien	t:	OXF	ORD F	ALLS	GRAN	IMAR SCHOOL							
Proje						G FACILITY, CARPARK AND		AYING FIELDS					
Loca	tion:	1078	B OXFC	DRD F/	ALLS	ROAD, OXFORD FALLS, NSV	V						
Job I	No. 3	30807SY			Meth	od: SPIRAL AUGER	R	.L. Surf	ace: 74.2m				
Date	: 26-	9-17				JK350		D	atum:	AHD			
					Log	ged/Checked by: T.C./W.T.							
Groundwater Record	ES U50 DB SAMPLES	DS Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON			0	<u>kxx</u> x		FILL: Silty sand, fine to coarse	20> M,			GRASS COVER			
OMPLET ION					SC	\grained, brown, with root fibres.	M	MD		ALLUVIAL			
						CLAYEY SAND: fine to coarse grained, orange brown and grey.				-			
		N = 10								-			
		8,6,4								-			
			1-							_			
										-			
			-			CLAYEY SAND: fine to coarse	1			-			
		N = 10				grained, orange brown and grey.				-			
		5,4,6								-			
			2 -	1		END OF BOREHOLE AT 1.95m				_			
				1						-			
				1						-			
										_			
			3 -							-			
			3-							_			
										-			
										-			
										-			
										_			
			4 -							_			
										_			
										_			
										_			
			5 -							_			
										-			
										-			
										-			
										-			
			6 -							_			
										-			
										-			
										-			
										-			
			7										

BOREHOLE LOG

K Borehole No. 20 1/1 E 337509 N 6565341

0.11		0.1/50			0.0.4.4					N 656534	
Clien								·-			
Proje						G FACILITY, CARPARK AND		G FIE	LDS		
Loca	tion:	1078	OXFC	DRD FA	ALLS	ROAD, OXFORD FALLS, NSW	V				
Job N	lo. 30	0807SY			Meth	od: SPIRAL AUGER	R	L. Surf	ace: 74.6m		
Date:	26-9	-17	JK350						atum:	AHD	
					Logo	ged/Checked by: T.C./W.T.					
	ES								.		
ater	SAMPLES	sts	Ê	Ő	Unified Classification	DESCRIPTION	ر م	sity	Hand Penetrometer Readings (kPa.)	Remarks	
Groundwater Record		Field Tests	Depth (m)	Graphic Log	fied ssific		Moisture Condition/ Weathering	Strength/ Rel. Density	nd netron adings	Kentarka	
Gro	DBB DBB DBB DBB DBB DBB DBB DBB DBB DBB	Fiel		Ğ. Ğ.	Cla		V e	Stre Rel	Наг Иска		
DRY ON COMPLET	-		-		SM	√FILL: Silty sand, fine to coarse √grained, brown, with roots.	M M	L		GRASS COVER	
ION			-			SILTY SAND: fine to coarse grained, brown and orange brown, with clay.				_ ALLUVIAL	
		N = 13 6,8,5	-							-	
		0,0,0	1 -							_	
										-	
			-							-	
			-							-	
			2 -			END OF BOREHOLE AT 1.95m					
			-	-						-	
			-							-	
			-							a a	
			3 –	-						_	
										-	
			-							-	
			-	-						-	
			4 -	-						_	
			-							-	
			-							-	
			-	-						-	
			5 -	-						_	
			-							-	
										-	
										-	
			6 -							_	
			-							_	
										-	
			-							-	
			7_				I				

BOREHOLE LOG

X Borehole No. 21 1/1 E 337554

011.00										E 337 N 6265		
Clien						IMAR SCHOOL						
Proje Loca						G FACILITY, CARPARK AND ROAD, OXFORD FALLS, NSV		GFIE	LDS			
							V					
		807SY			Meth	od: SPIRAL AUGER JK350			L. Surf			
Date:	26-9-	-17						D	atum:	AHD		
					Logg	ged/Checked by: T.C./W.T.						
Groundwater Record	ES U50 DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON OMPLET ION		<u> </u>	0 - - - 1 -			FILL: Silty sand, fine to coarse grained, brown and orange brown, with fine to medium grained sandstone gravel, trace of clay.	M	0, 12		GRASS COVER		
		N = 6 4,4,2	-		sc_	CLAYEY SAND: fine to coarse grained, orange brown and grey.						
			2 -	-		END OF BOREHOLE AT 1.95m			-	-		
			-	-					-			
			-									
			3 –	-					-	_		
			-						-	-		
			-									
			-	-					-	-		
			4 -							-		
			-							-		
			-							-		
			5							-		
			-							-		
			-							- -		
			-									
			6 -							-		
			-							-		
			-									
			- 7							-		

EXPLANATORY NOTES – ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 - 50
Firm	50 - 100
Stiff	100 - 200
Very Stiff	200 - 400
Hard	Greater than 400
Friable	Strength not attainable - soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

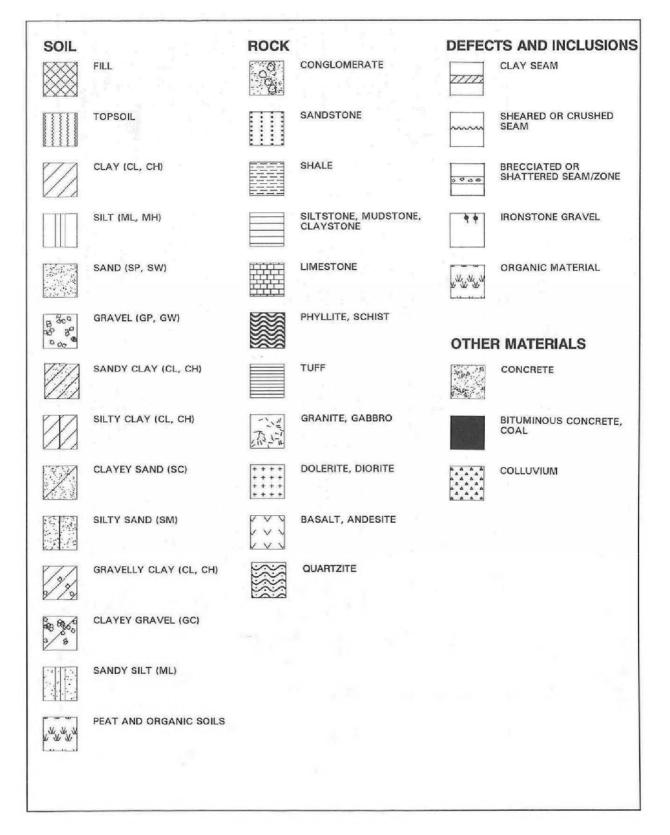
More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING


Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

	(Excluding part	icles larger	theation Proceed than 75 µm and an	lures I basing fracti	ons on	Group Symbols	Typical Names	Information Required for Describing Soils			Laboratory Classification Criteria
	Gravets More than half of coarse fraction is larger than 4 mm sieve size	Clean gravels (little or no fines)	Wide range i		nd substantial diate particle	GW	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name: indicate ap- proximate percentages of sand		of gravel and sand from grain size ge of fines (fraction smaller than 75 GW, GP, SW, SP GM, GC, SW, SP Borderline cases requiring use of dual symbols	$C_{\rm U} = \frac{D_{60}}{D_{10}} \text{Greater than 4} \\ C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \text{Between I and 3}$
	avets nalf of larger ieve si	Clear			range of sizes sizes missing	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	and gravel; maximum size; angularity, surface condition, and hardness of the coarse grains; local or geologic name		from g smalle sified as quiring	Not meeting all gradation requirements for GW
si ial is sizeb	Gra e than h etion is	with s clable t of	Nonplastic fi	nes (for iden) ML below)	ification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses	u	d sand action rre class Y, SP M, SC ases rec	Atterberg limits below "A" line, or PI less than 4 4 and 7 are
of mater of mater mater anaked ey	Mon	Gravels with fines (appreciable amount of fines)	Plastic fines (f		on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	identification	gravel and of fines (fraa ined soils arr iW, GP, SW, iM, GC, SM brderline cas dual symbo	Atterberg limits above "A" line, with PI greater than 7 borderline cases requiring use of dual symbols
Coarse-grained soils More than half of material is <i>larger</i> than 75 µm sieve size ^b particle visible to naked eye)	More than half of coarse fraction is smaller than 4 mm sieve size	Clean sands (little or no fines)			nd substantial diate particle	SW	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20 %	under field ide	Determine percentages of g curve Depending on percentage of ma sieve size) coarse grain Less than 5% More than 12% 5% to 12% do	$C_{U} = \frac{D_{60}}{D_{10}} \text{Greater than 6} \\ C_{C} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} \text{Between 1 and 3}$
More larger	nds half of smaller sieve si	Clea	Predominantl with some	y one size or a intermediate	range of sizes sizes missing	SP	Poorly graded sands, gravelly sands, little or no fines	hard, angular gravel par- ticles 12 mm maximum size; rounded and subangular sand grains coarse to fine, about	given uno	percer on pe size) co than 12 12%	Not meeting all gradation requirements for SW
the smallest p	Sa ction is 4 mm s	Sands with fines (appreciable amount of fines)	Nonplastic fit	nes (for ident see ML below)	ification pro-	SM	Silty sands, poorly graded sand- silt mixtures	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	as	termine curve pending m sieve Less th More 1 5 % to	Atterberg limits below "A" line or PI less than 5 difference of the second seco
	Mor	Sands Dr appre amou	Plastic fines (f		n procedures,	sc	Clayey sands, poorly graded sand-clay mixtures	alluvial sand; (SM)	fractions	å å	Atterberg limits below "A" line with PI greater than 7
about	Identification I	Procedures	on Fraction Sm	aller than 380	µm Sieve Size				the		
			Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				identifying	60 50 Comparin	g soils at equal liquid limit
Fine-grained soils More than half of material is <i>smaller</i> than 75 µm sieve size (The 75 µm sieve size	Silts and clays liquid limit		None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or claycy fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	curve in	40 Toughnes	s and dry strength increase
grained s of mater μm sieve (The 7:	Silts	2	Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	grain size	Desticity 02 Desticity	OH
halt halt			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	Use	10	OL MH
re than	Silts and clays liquid limit greater than		Slight to medium	Slow to none	Slight to medium	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	mation on structure, stratifica- tion, consistency in undisturbed and remoulded states, moisture and drainage conditions		0 10	20 30 40 50 60 70 80 90 100
Wo	s and puid	20	High to very high	None	High	CH	Inorganic clays of high plas- ticity, fat clays	Example:			Liquid limit
	Silt		Medium to high	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of		for labora	Plasticity chart tory classification of fine grained soils
н	ighly Organic Se	oils	Readily iden spongy feel texture	tified by co and frequent		Pt	Peat and other highly organic soils	fine sand; numerous vertical root holes; firm and dry in place; locss; (ML)			

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). 2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

LOG COLUMN	SYMBOL	DEFINITION	
		Standing water level. Time delay following completion of drilling may be show	vn.
Groundwater Record	- C -	Extent of borehole collapse shortly after drilling.	
		Groundwater seepage into borehole or excavation noted during drilling or exc	avation.
Samples	ES U50 DB DS ASB ASS SAL	Soil sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos screening. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.	
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. In show blows per 150mm penetration. 'R' as noted below.	ndividual
Field Tests	Nc = 5 3 R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. figures show blows per 150mm penetration for 60 degree solid cone driven by SP 'R' refers to apparent hammer refusal within the corresponding 150mm depth incr	T hammer.
	VNS = 25	Vane shear reading in kPa of Undrained Shear Strength.	
	PID = 100	Photoionisation detector reading in ppm (Soil sample heads pace test).	
Moisture (Cohesive Soils)	MC>PL MC≈PL MC <pl< td=""><td>Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.</td><td></td></pl<>	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.	
(Cohesionless)	D M W	DRY-Runs freely through fingers.MOIST-Does not run freely but no free water visible on soil surface.WET-Free water visible on soil surface.	
Strength (Consistency) Cohesive Soils	VS S F St VSt H ()	VERY SOFT- Unconfined compressive strength less than 25kPaSOFT- Unconfined compressive strength 25-5 0kPaFIRM- Unconfined compressive strength 50-1 00kPaSTIFF- Unconfined compressive strength 100- 200kPaVERY STIFF- Unconfined compressive strength 200- 400kPaHARD- Unconfined compressive strength greater than 400kPaBracketed symbol indicates estimated consistency based on tactile examinationtests.	n or other
Density Index/ Relative Density	VL	Density Index (ID) Range (%)SPT ' N' Value Range (Blows/ 0-4Very Loose<15	/300mm)
(Cohesionless Soils)	L	Loose 15-35 4-10	
	MD	Medium Dense 35-65 10-30 Danse 65.85 20.50	
	D VD	Dense 65-85 30-50 Very Dense >85 >50	
	()	Bracketed symbol indicates estimated density based on ease of drilling or othe	er tests.
Hand Penetrometer Readings	300 250	Numbers indicate individual test results in kPa on representative undisturbed material unless noted otherwise	
Remarks	'V' bit	Hardened steel 'V' shaped bit.	
	'TC' bit	Tungsten carbide wing bit.	
	T ₆₀	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.	

LOG SYMBOLS CONTINUED

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	ls (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL		May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	М	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	VH	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	EH		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

ROCK STRENGTH

Bedding Plane Parting	Defect orientations measured relative to the normal to
Clay Seam	(i.e. relative to horizontal for vertical holes)
Joint	
Planar	
Undulating	
Smooth	
Rough	
Iron stained	
Extremely Weathered Seam	
Crushed Seam	
Thickness of defect in millimetres	
	Clay Seam Joint Planar Undulating Smooth Rough Iron stained Extremely Weathered Seam Crushed Seam

Appendix D: Laboratory Report & COC Documents

TO: ENVIROLAB : 12 ASHLEY S CHATSWOO P: (02) 99100 F: (02) 99100 Attention: Ail	STREET D NSW 6200 6201			EIS Job Number: Date Res Required Page:	sults	E30807KM STANDARD					INVE SER REA MAC P: 03	RONI STIG. VICES R OF	DF 115 WICKS ROAD JARIE PARK, NSW 2113 888 5000 F: 02-9888 5001			5		
Location:	Oxford	Falls	120	1.3- 1				-		Sam	ple P	reserv	ed in	Esky o	n Ice			-
Sampler:	Tom C	lent		S.P.S.			-				1	ests	ts Required					
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 3	Combo 3a	Combo 6	Combo 6a	8 Metals	PAHs	TRH/BTEX	BTEX	Asbestos			
25/09/2017	J	BH1	0.0-0.2	G, A	0	Fill: silty sand				X								
25/09/2017	2	BH1	2.0-2.5	G, A	0	Clayey sand	X											
25/09/2017	3	BH2	0.0-0.2	G, A	0	Fill: silty sand		X										
25/09/2017	4	BH2	0.5-0.95	G, A	0	Fill: sand	X											
25/09/2017	5	BH3	0.0-0.2	G, A	0	Fill: silty sand		X			1							
25/09/2017	6	BH6	0.0-0.2	G, A	0	Fill: silty sand				X								-
25/09/2017	7	BH6	3.0-3.45	G, A	0	Fill: sand	X											
26/09/2017	8	BH9	0.0-0.2	G, A	0	Fill: silty sand				X							-	
26/09/2017	g	BH11	0.0-0.2	G, A	0	Fill: silty sand				X								
26/09/2017	10	BH12	0.0-0.2	G, A	0	Fill: silty sand		X		-			1				1	
26/09/2017	10	BH13	0.5-0.95	G, A	0	Fill: sand		X									1	
26/09/2017	12	BH16	0.0-0.2	G, A	0	Fill: silty sand	X	~									1	
26/09/2017	12	BH18	0.0-0.2	G, A	0	Fill: silty sand				x							1	-
26/09/2017	14	BH18	1.5-1.95	G, A	0	Fill: clayey sand	X			1							-	
26/09/2017	15	BH19	0.0-0.2	G, A	0	Fill: silty sand	~	X									-	
	0																_	
													1	1		nviroli	abs	ervice
													er Citt	NAC.	Ch	atswopi Ph: (02	2 Asl	hlev :
							-						Job (10:	E	Ph: (02)	991	0 620
													Date	ccei		6	-1	2
											1		lime local	Recei	ved:	14	+++	-
													lemp.	0	Ambi	ent	4.7	
Remarks (cor				:			G - 2 A - Z P - P	50mg iplock astic	Glas Glas Asbe Bag	s Jar estos	Bag		digener.	Ć	licep	b l	Vone	3
Relinquished	By:	alla		Date:	28/9	17	Time	2:/	Spr	n	Rece	lived I	By: EU	3		Date: 2810	7/1	2

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Rob Muller

Sample Login Details	
Your reference	E30807KM, Oxford Falls
Envirolab Reference	176661
Date Sample Received	28/09/2017
Date Instructions Received	28/09/2017
Date Results Expected to be Reported	06/10/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	15 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	Organophosphorus Pesticides	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils
BH1-0.0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
BH1-2.0-5.0	\checkmark	\checkmark	\checkmark				\checkmark	
BH2-0.0-0.2	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark
BH2-0.5-0.95	\checkmark	\checkmark	\checkmark				\checkmark	
BH3-0.0-0.2	✓	✓	\checkmark				\checkmark	\checkmark
BH6-0.0-0.2	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
BH6-3.0-3.45	✓	✓	\checkmark				✓	
BH9-0.0-0.2	✓	✓	✓	\checkmark	✓	✓	✓	✓
BH11-0.0-0.2	✓	✓	✓	\checkmark	✓	✓	✓	\checkmark
BH12-0.0-0.2	✓	✓	✓				✓	✓
BH13-0.5-0.95	✓	✓	✓				✓	✓
BH16-0.0-0.2	✓	✓	✓				✓	
BH18-0.0-0.2	✓	✓	✓	✓	\checkmark	✓	✓	✓
BH18-1.5-1.95	✓	✓	✓				✓	
BH19-0.0-0.2	✓	✓	✓				✓	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 176661

Client Details	
Client	Environmental Investigation Services
Attention	Rob Muller
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E30807KM, Oxford Falls
Number of Samples	15 Soil
Date samples received	28/09/2017
Date completed instructions received	28/09/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	06/10/2017	
Date of Issue	06/10/2017	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Paul Ching Authorised by Asbestos Approved Signatory: Paul Ching

Results Approved By

Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Paul Ching, Senior Analyst Steven Luong, Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	129	127	127	116	130
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	BH6	BH6	BH9	BH11	BH12
Your Reference Depth	UNITS	BH6 0.0-0.2	BH6 3.0-3.45	BH9 0.0-0.2	BH11 0.0-0.2	
	UNITS					BH12
Depth	UNITS	0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	BH12 0.0-0.2
Depth Date Sampled	UNITS -	0.0-0.2 25/09/2017	3.0-3.45 25/09/2017	0.0-0.2 26/09/2017	0.0-0.2 26/09/2017	BH12 0.0-0.2 26/09/2017
Depth Date Sampled Type of sample	UNITS - -	0.0-0.2 25/09/2017 Soil	3.0-3.45 25/09/2017 Soil	0.0-0.2 26/09/2017 Soil	0.0-0.2 26/09/2017 Soil	BH12 0.0-0.2 26/09/2017 Soil
Depth Date Sampled Type of sample Date extracted	UNITS - mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017	3.0-3.45 25/09/2017 Soil 29/09/2017	0.0-0.2 26/09/2017 Soil 29/09/2017	0.0-0.2 26/09/2017 Soil 29/09/2017	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017
Depth Date Sampled Type of sample Date extracted Date analysed	-	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1)	- - mg/kg mg/kg mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <25 <0.2
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <25 <0.2 <0.2
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.5 <1 <2	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0-0.2 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	3.0-3.45 25/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	0.0-0.2 26/09/2017 Soil 29/09/2017 (03/10/2017 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	BH12 0.0-0.2 26/09/2017 Soil 29/09/2017 03/10/2017 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	123	130	105	117	102

Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	30/09/2017	30/09/2017	30/09/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	80	82	79	81

Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	BH6	BH6	BH9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	30/09/2017	30/09/2017	30/09/2017	30/09/2017	30/09/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	76	80	84	83

svTRH (C10-C40) in Soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	30/09/2017	30/09/2017	30/09/2017	30/09/2017	30/09/2017
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	79	85	85	79	85

PAHs in Soil						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.3	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.3	<0.05	0.1	1.4	<0.05
Surrogate p-Terphenyl-d14	%	106	99	98	102	98

PAHs in Soil						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	BH6	BH6	BH9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.06	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	0.1	0.4	<0.05
Surrogate p-Terphenyl-d14	%	101	105	101	103	101

PAHs in Soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2017	27/09/2017	27/09/2017	27/09/2017	27/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	97	107	103	105	105

Organochlorine Pesticides in soil						
Our Reference		176661-1	176661-6	176661-8	176661-9	176661-13
Your Reference	UNITS	BH1	BH6	BH9	BH11	BH18
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	78	86	80	90

Organophosphorus Pesticides					_	
Our Reference		176661-1	176661-6	176661-8	176661-9	176661-13
Your Reference	UNITS	BH1	BH6	BH9	BH11	BH18
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	78	86	80	90

PCBs in Soil						
Our Reference		176661-1	176661-6	176661-8	176661-9	176661-13
Your Reference	UNITS	BH1	BH6	BH9	BH11	BH18
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	80	78	86	80	90

Acid Extractable metals in soil						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Arsenic	mg/kg	6	<4	5	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	8	7	16	7
Copper	mg/kg	10	1	18	15	6
Lead	mg/kg	34	9	23	73	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	2	2	2	2
Zinc	mg/kg	79	13	51	63	31

Acid Extractable metals in soil						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	BH6	BH6	BH9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Arsenic	mg/kg	<4	<4	8	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	7	13	9	7
Copper	mg/kg	5	13	29	12	10
Lead	mg/kg	13	21	56	25	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	2	4	7	2
Zinc	mg/kg	39	100	200	45	42

Acid Extractable metals in soil						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Arsenic	mg/kg	<4	6	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	12	6	19	7
Copper	mg/kg	2	31	13	3	10
Lead	mg/kg	9	36	13	8	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	4	3	2	3
Zinc	mg/kg	21	160	48	220	49

Moisture						
Our Reference		176661-1	176661-2	176661-3	176661-4	176661-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0.0-0.2	2.0-5.0	0.0-0.2	0.5-0.95	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	25/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Moisture	%	6.9	13	6.4	9.5	7.9
Moisture						
Our Reference		176661-6	176661-7	176661-8	176661-9	176661-10
Your Reference	UNITS	BH6	BH6	BH9	BH11	BH12
Depth		0.0-0.2	3.0-3.45	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Moisture	%	6.1	15	9.6	4.1	6.7
Moisture						
Our Reference		176661-11	176661-12	176661-13	176661-14	176661-15
Your Reference	UNITS	BH13	BH16	BH18	BH18	BH19
Depth		0.5-0.95	0.0-0.2	0.0-0.2	1.5-1.95	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Date analysed	-	03/10/2017	03/10/2017	03/10/2017	03/10/2017	03/10/2017
Moisture	%	11	2.2	0.8	20	1.2

Asbestos ID - soils						
Our Reference		176661-1	176661-3	176661-5	176661-6	176661-8
Your Reference	UNITS	BH1	BH2	BH3	BH6	BH9
Depth		0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2017	25/09/2017	25/09/2017	25/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	6/10/2017	6/10/2017	6/10/2017	6/10/2017	6/10/2017
Sample mass tested	g	Approx. 15g	Approx. 15g	Approx. 25g	Approx. 25g	Approx. 50g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibre detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		176661-9	176661-10	176661-11	176661-13	176661-15
Your Reference	UNITS	BH11	BH12	BH13	BH18	BH19
Depth		0.0-0.2	0.0-0.2	0.5-0.95	0.0-0.2	0.0-0.2
Date Sampled		26/09/2017	26/09/2017	26/09/2017	26/09/2017	26/09/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	6/10/2017	6/10/2017	6/10/2017	6/10/2017	6/10/2017
Sample mass tested	g	Approx. 25g	Approx. 15g	Approx. 15g	Approx. 40g	Approx. 25g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown coarse- grained soil & rocks	Brown sandy soil	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibre				
Trace Analysis	-	detected No asbestos detected				

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> </pql></pql>
	 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						plicate		Spike Re	oike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6	
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017	
Date analysed	-			03/10/2017	1	03/10/2017	03/10/2017		03/10/2017	03/10/2017	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	115	90	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	115	90	
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	97	84	
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	107	90	
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	123	93	
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	123	92	
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	121	94	
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	124	1	129	125	3	129	99	

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	13	29/09/2017	29/09/2017			
Date analysed	-			[NT]	13	03/10/2017	03/10/2017			
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	13	<25	<25	0		
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	13	<25	<25	0		
Benzene	mg/kg	0.2	Org-016	[NT]	13	<0.2	<0.2	0		
Toluene	mg/kg	0.5	Org-016	[NT]	13	<0.5	<0.5	0		
Ethylbenzene	mg/kg	1	Org-016	[NT]	13	<1	<1	0		
m+p-xylene	mg/kg	2	Org-016	[NT]	13	<2	<2	0		
o-Xylene	mg/kg	1	Org-016	[NT]	13	<1	<1	0		
naphthalene	mg/kg	1	Org-014	[NT]	13	<1	<1	0		
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	13	105	128	20	[NT]	[NT]

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	30/09/2017
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	111	112
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	109	112
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	106	82
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	111	112
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	109	112
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	106	82
Surrogate o-Terphenyl	%		Org-003	83	1	82	83	1	95	82

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	13	29/09/2017	29/09/2017			
Date analysed	-			[NT]	13	30/09/2017	30/09/2017			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	13	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	13	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	13	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	13	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	13	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	13	<100	<100	0		
Surrogate o-Terphenyl	%		Org-003	[NT]	13	85	83	2		

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6	
Date extracted	-			27/09/2017	1	27/09/2017	27/09/2017		27/09/2017	27/09/2017	
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017	
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	89	92	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	97	96	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	101	101	
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	96	97	
Pyrene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	93	93	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	93	91	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.06	<0.05	18	[NT]	[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	108	1	106	103	3	112	111	

QUAL	QUALITY CONTROL: PAHs in Soil								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	13	27/09/2017	27/09/2017			[NT]	
Date analysed	-			[NT]	13	29/09/2017	29/09/2017			[NT]	
Naphthalene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Acenaphthene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Fluorene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Phenanthrene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Anthracene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Fluoranthene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Pyrene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Chrysene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	13	<0.2	<0.2	0		[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	13	<0.05	<0.05	0		[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	13	<0.1	<0.1	0		[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	13	103	102	1		[NT]	

QUALITY CON	TROL: Organc	chlorine l	Pesticides in soil		Duplicate Spike Recove					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	95
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	94
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	87	91
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	83	87
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	84	88
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	93
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	96	101
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	81	85
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	86	90
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	92
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	78	1	80	78	3	73	78

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides		Duplicate Spike Re					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	83	88
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	84	89
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	82	88
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	95	93
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	105	99
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	94	96
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	93	99
Surrogate TCMX	%		Org-008	78	1	80	78	3	82	86

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6
Date extracted	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Date analysed	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	100	104
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCLMX	%		Org-006	78	1	80	78	3	82	86

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil						olicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	176661-6	
Date prepared	-			29/09/2017	1	29/09/2017	29/09/2017		29/09/2017	29/09/2017	
Date analysed	-			03/10/2017	1	03/10/2017	03/10/2017		03/10/2017	03/10/2017	
Arsenic	mg/kg	4	Metals-020	<4	1	6	6	0	114	100	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	104	100	
Chromium	mg/kg	1	Metals-020	<1	1	9	8	12	111	98	
Copper	mg/kg	1	Metals-020	<1	1	10	9	11	104	98	
Lead	mg/kg	1	Metals-020	<1	1	34	31	9	105	96	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	95	98	
Nickel	mg/kg	1	Metals-020	<1	1	3	3	0	107	100	
Zinc	mg/kg	1	Metals-020	<1	1	79	66	18	124	87	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	13	29/09/2017	29/09/2017			[NT]	
Date analysed	-			[NT]	13	03/10/2017	03/10/2017			[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	13	<4	<4	0		[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	13	<0.4	<0.4	0		[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	13	6	9	40		[NT]	
Copper	mg/kg	1	Metals-020	[NT]	13	13	12	8		[NT]	
Lead	mg/kg	1	Metals-020	[NT]	13	13	13	0		[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	13	<0.1	<0.1	0		[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	13	3	3	0		[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	13	48	47	2	[NT]	[NT]	

Result Definiti	sult Definitions								
NT	Not tested								
NA	Test not required								
INS	Insufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Appendix E: Soil Suitability Analysis Report and Recommendations

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off:16 Chilvers Road
Thornleigh NSW 2120Tel:1300 30 40 80Mailing Address:PO Box 357
Pennant Hills NSW 1715Em:info@sesl.com.auWeb:www.sesl.com.au

Batch N°: 45188 Sample N°: 1 Date Received: 3/10/17 Client Name⁻ **Environmental Investigation Services** Project Name: Soil assessment for School Oval Client Contact: Rob Muller Client Job N°: SESL Quote N°: Q7388 Client Order N°: Sample Name: BH1 0.0-0.2 Address. PO Box 976 Description: Soil NORTH RYDE BC NSW 1670 Test Type: FSC, OM WB, BSP

RECOMMENDATIONS

Sample 'BH1 0.0-0.2' was tested to determine its use in a school oval. The soil is slightly acidic in CaCl2 with desirably low salinity, sodium and chloride levels. The cation exchange is close to being balanced. The eCEC is low indicating poor nutrient retention. Nitrate, potassium and sulphate need boosting. Organic matter = 6.2% (very high). The soil is a light sandy clay loam with a weak crumb structure and rapid permeability. The soil once compacted through

pedestrian traffic especially during wet periods will start to waterlog and turf growth will fail. We suggest capping the soil with an imported media is used as passive amenity turf. However if this soil is to be used as a sportsfield further management is required.

Amendment Strategy

We recommend adding 30g/m2 of urea to boost nitrogen.

Add sulphate of potash at 40g/m2.

To help withstand compaction for passive amenity turf cap existing ameliorated soil with 100mm of an imported 80/20 media. Alternatively use the soil from Sample 3 to cap this soil.

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report. Disclaimer: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full.

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Mailing Address:

Thornleigh NSW 2120 PO Box 357 Pennant Hills NSW 1715

Tel: 1300 30 40 80 Fax: 1300 64 46 89 info@sesl.com.au Em: Web: www.sesl.com.au

Batch N°: 45188

Sample N°: 1

Date Received: 3/10/17

	- T	PLANT A	AILADLL		3	1		1
Major Nutrients	Result (mg/kg)	Very Low	Marginal	🌠 Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustmer (g/sqm)
Nitrate-N (NO ₃)	7					0.9	4	3.1
Phosphate-P (PO ₄)	101					13.4	8.4	Drawdowr
Potassium (K) [†]	165					21.9	29.3	7.4
Sulphate-S (SO ₄)	3.5					0.5	9	8.5
Calcium (Ca) [†]	1220					162.3	208.3	46
Magnesium (Mg) [†]	249					33.1	21.7	Drawdowr
Iron (Fe)	475					63.2	73.4	10.2
Manganese (Mn) [†]	11					1.5	5.9	4.4
Zinc (Zn) [†]	29					3.9	0.7	Drawdowr
Copper (Cu)	3.5					0.5	0.8	0.3
Boron (B) [†]	<0.1					0	0.4	0.4
Growth is likely to be severely depressed and deficiency symptoms	Potential "hidden hunger", or sub-clinical	is barely adequate for	adequate for the plan	t, may be detrim	ental to plant	Drawdown: The	objective nutrient me	
Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.	Potential "hidden hunger", or sub-clinical deficiency. Potential response to nutrient addition is 60 to 90%.	Supply of this nutrient is barely adequate for the plant, and build-up is still recommended. Potential response to nutrient addition is 30 to 60%.	Supply of this nutrien adequate for the plan and and only maintenance applicat ates are recommend Potential response to jutrient addition is 5 t 30%.	t is The level is ex- may be detrim growth (i.e. ph ion may contribute ground and su Drawdown is r o Potential respo- addition is <2%	ental to plant ytotoxic) and to pollution of rface waters. ecommended. onse to nutrient 6.	Adequate. • g/sqm measure	 objective nutrient ma pil nutrients. There is fertiliser when soil tes ments are based on nd selected soil depth 	soil bulk density of
Growth is likely to be severely depressed and deficiency symptoms present. Large applications for solution under the symptometed. Potential response to nutrient addition is >90%.				t, may be detrim growth (i.e. ph ion may contribute ed. ground and su Drawdown is r o Potential respo addition is <29	6.	Adequate. • g/sqm measure 1.33 tonne/m ³ ar	ements are based on Id selected soil depth	soil bulk density of
Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.		Exchangeable A Adams-Evans Buffe	cidity	t, may be detrim growth (i.e. ph ion may contribute differentiation Drawdown is r o Potential respo addition is <29	6.	Adequate. • g/sqm measure	ements are based on Id selected soil depth	soil bulk density of
Phosphorus Satu		Exchangeable A	cidity r pH (BpH):	<u> </u>	Physical	Adequate. • g/sqm measure 1.33 tonne/m ³ ar	ements are based on nd selected soil depth	soil bulk density of
Phosphorus Satu	ration Index	Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca	cidity r pH (BpH): ls (meq/100g ⁻¹): apacity (eCEC):	- 8.6 8.6	Physical Texture: Colour: Estimated	Adequate. • g/sqm measure 1.33 tonne/m ³ ar	ements are based on Id selected soil depth	soil bulk density of Clay Loam 25%
Phosphorus Satu		Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca Base Saturation (%)	cidity r pH (BpH): is (meq/100g ⁻¹): apacity (eCEC):):	- 8.6 8.6 100	Physical Texture: Colour: Estimated Size:	Descriptic	ements are based on Id selected soil depth	soil bulk density of r Clay Loam - 25% e (1 - 10mm)
Phosphorus Satu	ration Index	Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca Base Saturation (%) Exchangeable Acidi	cidity r pH (BpH): is (meq/100g ⁻¹): apacity (eCEC):): ty (meq/100g ⁻¹):	- 8.6 8.6 100	Physical Texture: Colour: Estimated Size: Gravel con	Descriptic clay content:	ements are based on Ind selected soil depth Don Light Sandy Fine	soil bulk density of r Clay Loam 25% e (1 - 10mm) Gravelly
Phosphorus Satu	ration Index xcessive	Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca Base Saturation (%) Exchangeable Acidi	cidity r pH (BpH): is (meq/100g ⁻¹): apacity (eCEC):): ty (meq/100g ⁻¹): ty (%):	- 8.6 8.6 100	Physical Texture: Colour: Estimated Size:	Description	ements are based on Ind selected soil depth Don Light Sandy Fine	v Clay Loam 25% (1 - 10mm) Gravelly edal - Weak
Phosphorus Satu	ration Index xcessive kg ≥0.4	Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca Base Saturation (%) Exchangeable Acidi Exchangeable Acidi Lime Application F	cidity r pH (BpH): is (meq/100g ⁻¹): apacity (eCEC):): ty (meq/100g ⁻¹): ty (%): Rate	- 8.6 8.6 100 -	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural	Description	ements are based on Id selected soil depth	soil bulk density of Clay Loam 25%
Phosphorus Satu	ration Index xcessive xg ≥0.4	Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca Base Saturation (%) Exchangeable Acidi Exchangeable Acidi Lime Application F – to achieve pH 6.0	cidity r pH (BpH): s (meq/100g ⁻¹): apacity (eCEC):): ty (meq/100g ⁻¹): ty (%): Rate (g/sqm):	- 8.6 8.6 100	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural of Potential ir Permeabili	Description clay content: tent: strength: unit: ifiltration rate ty (mm/hr):	ements are based on Id selected soil depth Dn Light Sandy Fine P	soil bulk density of Clay Loam 25% e (1 - 10mm) Gravelly edal - Weak Crumb
Phosphorus Satu	ration Index xcessive kg ≥0.4 s environmental	Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca Base Saturation (%) Exchangeable Acidi Exchangeable Acidi Lime Application F – to achieve pH 6.0 – to neutralise Al (g)	cidity r pH (BpH): apacity (eCEC): b: ty (meq/100g ⁻¹): ty (%): Rate (g/sqm): /sqm):	- 8.6 8.6 100 -	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural u Potential ir Permeabili Calculated	Description clay content: tent: strength: unit: filtration rate ty (mm/hr): EC _{SE} (dS/m)	ements are based on Id selected soil depth Dn Light Sandy Fine P ::	v Clay Loam 25% (1 - 10mm) Gravelly edal - Weak Crumb Rapid >120 0.4
Phosphorus Satu 0.11 0.06 Adequate 0 0.15 Excessive. Exceeds	ration Index xcessive ×g ≥0.4 s environmental ent improved P uce potential for	Exchangeable A Adams-Evans Buffe Sum of Base Cation Eff. Cation Exch. Ca Base Saturation (%) Exchangeable Acidi Exchangeable Acidi Lime Application F – to achieve pH 6.0	cidity r pH (BpH): is (meq/100g ⁻¹): apacity (eCEC):): ty (meq/100g ⁻¹): ty (%): Rate (g/sqm): /sqm):	- 8.6 8.6 100 - -	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural of Potential in Permeabili Calculated – Non-s	Description clay content: tent: strength: unit: filtration rate ty (mm/hr): EC _{SE} (dS/m)	ements are based on Id selected soil depth Don Light Sandy Fine P :: :: ::	v Clay Loam 25% (1 - 10mm) Gravelly edal - Weak Crumb Rapid >120 0.4

Consultant: Chantal Milner

Authorised Signatory: Simon Leake

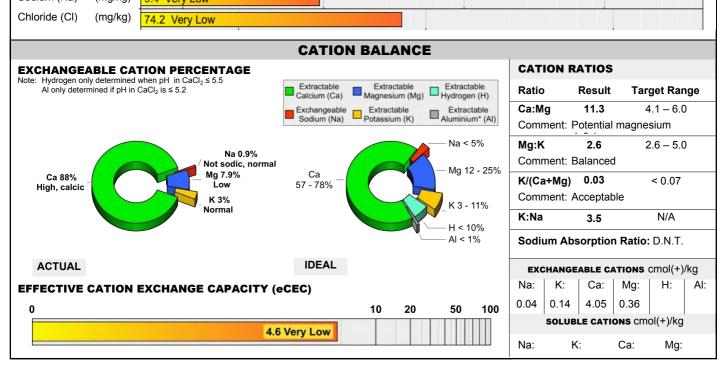
Date Report Generated 16/10/2017

METHOD REFERENCES:

MIC INFO: Ref LINE CONTRACT OF A CONTRACT OF

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report.

Disclaimer: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full.


Mehlich 3 - Multi-nutrient Extractant

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 1300 30 40 80

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

Batch N°: 4518	8 Sample N°: 2	Date Received	: 3/10/17		Report S	status: O Dr	aft ⊚ Fi	nal
Client Name: Client Contact:	Environmental Investigation Service	es Project Name:	Soil assessn	nent for Sc	hool Oval			
Client Job N°:		SESL Quote N°	: Q7388					
Client Order N°:		Sample Name:	BH4 0.5-0.95					
Address:	PO Box 976	Description:	Soil					
	NORTH RYDE BC NSW 1670	Test Type:	FSC, OM_WI	B, BSP				
		RECOMMENI	DATIONS					
imported med	ia is used as passive amenity turf. I	However if this soil	is to be used	as a sport		apping the s managemer	nt is requ	
Amendment S We recommer To help withst Alternatively u	Strategy nd adding a multipurpose NPK+TE and compaction for passive amenit se the soil from Sample 3 to cap th	fertliser that has lo y turf cap existing a is soil.	w P. ameliorated s	oil with 10	sfield further i	nanagemer	·	ired
Amendment S We recommer To help withst Alternatively u	Strategy and adding a multipurpose NPK+TE and compaction for passive amenit se the soil from Sample 3 to cap th E DEPTH (mm): 100 O 150 O 2	fertliser that has lo y turf cap existing a is soil.	w P. ameliorated s	oil with 10	sfield further i	nanagemer	·	ired
Amendment S We recommer To help withst Alternatively u	Strategy and adding a multipurpose NPK+TE and compaction for passive amenit se the soil from Sample 3 to cap th E DEPTH (mm): 100 O 150 O 2	fertliser that has lo y turf cap existing a is soil. 200 FE ELECTRICAL Medium Slight	w P. ameliorated s	oil with 10	sfield further i	nanagemer	·	
Amendment S We recommer To help withst Alternatively u	Strategy and adding a multipurpose NPK+TE and compaction for passive amenit se the soil from Sample 3 to cap th E DEPTH (mm):	fertliser that has lo y turf cap existing a is soil. 200 FE ELECTRICAL Medium Slight	w P. ameliorated s RTILITY RA CONDUC	oil with 10 TING: O TIVITY Slight	Domm of an im	ate O High	20 media	
Amendment S We recommer To help withst Alternatively u SOIL SAMPLE	Strategy and adding a multipurpose NPK+TE and compaction for passive amenit se the soil from Sample 3 to cap th E DEPTH (mm):	fertliser that has lov y turf cap existing a is soil. 200 FE ELECTRICAL Medium Slight Acidity Slight 6.0 6.1	w P. ameliorated s RTILITY RA CONDUC	oil with 10 TING: O TIVITY Slight Alkalinity	Domm of an im Low Moderate Alkalinity	ate O High	0 media	rong nity
Amendment S We recommer To help withst Alternatively u SOIL SAMPLE	Strategy and adding a multipurpose NPK+TE and compaction for passive amenit se the soil from Sample 3 to cap th E DEPTH (mm): Image: 100 O 150 O 2 PH and Store Sto	fertliser that has lov y turf cap existing a is soil. 200 FE ELECTRICAL Medium Slight Acidity Slight 6.0 6.1	w P. ameliorated s RTILITY RA CONDUC V. Slight Acidity Neutral 5 7.0	oil with 10 TING: O TIVITY Slight Alkalinity	Domm of an im Low Moderate Alkalinity	ate O High	0 media	rong nity
Amendment S We recommer To help withst Alternatively u SOIL SAMPLE	Strategy and adding a multipurpose NPK+TE and compaction for passive ameniti se the soil from Sample 3 to cap th E DEPTH (mm): 100 O 150 O 2 PH and Strong Acidity Strong Acidity Str	fertliser that has lov y turf cap existing a is soil. 200 FE ELECTRICAL Medium Slight 5 6.0 6.0	w P. ameliorated s RTILITY RA CONDUC V. Slight Acidity Neutral 5 7.0	oil with 10 TING: O TIVITY Slight Alkalinity	Domm of an im Low Moderate Alkalinity	ate O High	0 media	rong nity
Amendment S We recommer To help withst Alternatively u	Strategy and adding a multipurpose NPK+TE and compaction for passive amenity se the soil from Sample 3 to cap th E DEPTH (mm): 100 150 2 E DEPTH (mm): 100 150 2 E DEPTH (mm): 9 100 100 150 100 100<td>fertliser that has lov y turf cap existing a is soil. 200 FE ELECTRICAL Medium Slight Acidity Slight 6.0 6.4 6.29</td><td>w P. ameliorated s RTILITY RA CONDUC Sight Neutral 5 7.0 5.61</td><td>oil with 10 TING: O TIVITY Slight Alkalinity</td><td>DOmm of an im DOmm of an im Low Moderate Alkalinity 8.0 8.5</td><td>ate O High</td><td>0 media</td><td>rrong aity ≥</td>	fertliser that has lov y turf cap existing a is soil. 200 FE ELECTRICAL Medium Slight Acidity Slight 6.0 6.4 6.29	w P. ameliorated s RTILITY RA CONDUC Sight Neutral 5 7.0 5.61	oil with 10 TING: O TIVITY Slight Alkalinity	DOmm of an im DOmm of an im Low Moderate Alkalinity 8.0 8.5	ate O High	0 media	rrong aity ≥

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report. Disclaimer: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full.

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Mailing Address:

Thornleigh NSW 2120 PO Box 357 Pennant Hills NSW 1715

Tel: 1300 30 40 80 Fax: 1300 64 46 89 info@sesl.com.au Em: Web: www.sesl.com.au

Batch N°: 45188

Sample N°: 2

Date Received: 3/10/17

Major Nutrients	Result (mg/kg)	Very Low	Marginal	💋 Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustmen (g/sqm)
Nitrate-N (NO ₃)	1.7					0.2	4	3.8
Phosphate-P (PO ₄)	109					14.5	8.4	Drawdow
Potassium (K) [†]	55					7.3	23.7	16.4
Sulphate-S (SO ₄)	20					2.7	9	6.3
Calcium (Ca) [†]	811					107.9	168.5	60.6
Magnesium (Mg) [†]	44					5.9	17.8	11.9
Iron (Fe)	223					29.7	73.4	43.7
Manganese (Mn) [†]	3.1					0.4	5.9	5.5
Zinc (Zn) [†]	32					4.3	0.7	Drawdow
Copper (Cu)	1.6					0.2	0.8	0.6
Boron (B) [†]	<0.1					0	0.4	0.4
Potential response to nutrient addition is >90%.		Supply of this nutrient is barely adequate for at the plant, and build-up is still w. recommended. Potential response to nutrient addition is 30 to 60%.	Potential response to nutrient addition is 5 to 30%.	may be detrime growth (i.e. phy may contribute ground and su Drawdown is re Potential respo addition is <2%	nse to nutrient	• g/sqm measure 1.33 tonne/m ³ an	ments are based on ad selected soil depth	soil bulk density of
Potential response to nutrient addition is >90%.		Supply of this nutrient is barely adequate for the plant, and build-up is still recommended. Potential response to nutrient addition is 30 to 60%.	Supply of this nutrient is adequate for the plant, and and only restriction of the plant, are are recommended of the plant of the plant of the of the plant of the plant of the plant of the of the plant of the plant of the plant of the of the plant of the plant of the plant of the of the plant of the plant of the plant of the of the plant of the plant of the plant of the plant of the of the plant of the plant of the plant of the plant of the of the plant of the plant of the plant of the plant of the of the plant of the of the plant of th	Drawdown is re Potential respo addition is <2%	nse to nutrient	 g/sgm measure 	ements are based on a id selected soil depth	soil bulk density of
Provent is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.		Exchangeable A Adams-Evans Buffe	cidity	Drawdown is r Potential respo addition is <2%	nse to nument	 g/sgm measure 	d selected soil depth	soil bulk density of

Consultant: Chantal Milner

Authorised Signatory: Simon Leake

Date Report Generated 16/10/2017

METHOD REFERENCES:

 $\begin{array}{l} ph (1;5 H_0) - Rayment & Higginson (1992) 4A1, \\ ph (1;5 CaC) - Rayment & Higginson (1992) 4B1, \\ EC (1;5) - Rayment & Higginson (1992) 5A2, \\ Nitrate - Rayment & Higginson (1992) 5A2, \\ Nitrate - Rayment & Higginson (1992) 7B1 \\ Alumnium - SE3 Lin-house, \\ Buffer pH and Hydrogen - Adams-Evans (1972) \\ Tature Stucture Order (1992), Subtrate - Munchi Charlos, CuD, B. Mehlich 3 (1984), \\ Buffer pH and Hydrogen - Adams-Evans (1972) \\ Tature Stucture Order, Munchi Charl, CuD, B. Mehlich 3 (1984), \\ Northcoter (1992), Stucture - Munchi (1991), Colour - "Munsell" (2000)) \\ \end{array}$

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report.

Disclaimer: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full.

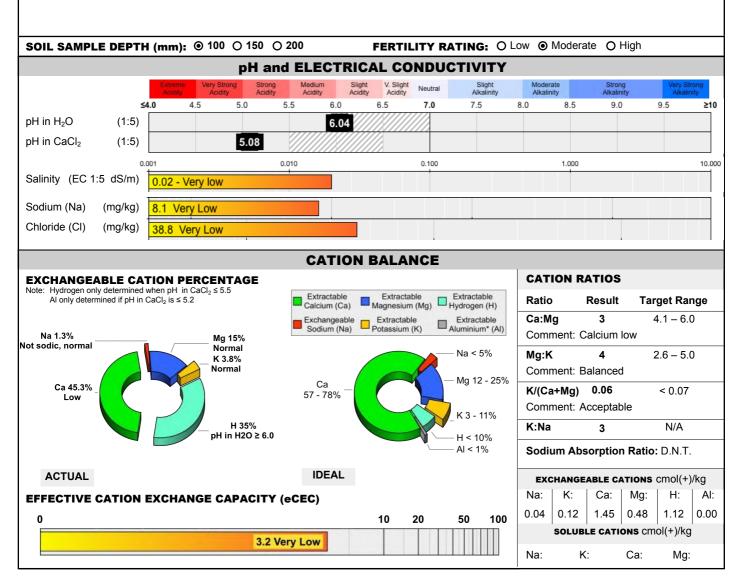
Mehlich 3 - Multi-nutrient Extractant

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 1300 30 40 80

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

Batch N°: 45188 Sample N°: 3 Date Received: 3/10/17 Project Name: Soil assessment for School Oval Client Name⁻ **Environmental Investigation Services** Client Contact: Rob Muller Client Job N°: SESL Quote N°: Q7388 Client Order N°: Sample Name: BH7 0.0-0.2 Address. PO Box 976 Description: Soil NORTH RYDE BC NSW 1670 Test Type: FSC, OM WB, BSP


RECOMMENDATIONS

Sample 'BH7 0.0-0.2' was tested to determine its use in a school oval. The soil is strongly acidic in CaCl2 with desirably low salinity, sodium and chloride levels. The cation exchange is highly acidic. The eCEC is low indicating poor nutrient retention. All nutrients need boosting aside from phosphorus. Organic matter = 3.1% (moderate). The soil is a sandy loam with a weak crumb structure and rapid permeability. This soil is the best choice out of the 3 samples for

The soil is a sandy loam with a weak crumb structure and rapid permeability. This soil is the best choice out of the 3 samples for use in a school oval. This soil could be used as the capping layer for the other 2 soils.

Amendment Strategy

We recommend adding a multipurpose NPK+TE fertliser that has low P. A small amount of lime at just 50g/m2 will reduce the exchangeable acidity.

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report. Disclaimer: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full.

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Mailing Address:

Thornleigh NSW 2120 PO Box 357 Pennant Hills NSW 1715

Tel: 1300 30 40 80 Fax: 1300 64 46 89 info@sesl.com.au Em: Web: www.sesl.com.au

Batch N°: 45188

Sample N°: 3

Date Received: 3/10/17

				VAILABLE					
Major Nutrients	Result (mg/kg)	Very Lo	w Low	Marginal	🌠 Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustme (g/sqm)
Nitrate-N (NO ₃)	2.2						0.3	4	3.7
Phosphate-P (PO ₄)	121						16.1	8.4	Drawdow
Potassium (K) [†]	47.5						6.3	23.7	17.4
Sulphate-S (SO ₄)	<3.20						0.4	9	8.6
Calcium (Ca) [†]	291						38.7	168.5	129.8
Magnesium (Mg) [†]	58						7.7	17.8	10.1
Iron (Fe)	173						23	73.4	50.4
Manganese (Mn) [†]	3.5		//				0.5	5.9	5.4
Zinc (Zn) [†]	5.7						0.8	0.7	Drawdow
Copper (Cu)	<0.64						0.1	0.8	0.7
Boron (B) [†]	<0.1						0	0.4	0.4
Very Low Growth is likely to be severely depressed and deficiency symptoms	Potential "hidde hunger", or sub deficiency. Pote	en Supply -clinical is barel ential the play	Marginal of this nutrient y adequate for it, and	Supply of this nutrier adequate for the plan and and only	t is The level is ex may be detrim growth (i.e. ph	cessive and iental to plant iytotoxic) and	economic efficie environment. Drawdown: The utilise residual s	-	
Very Low Growth is likely to be severely depressed and deficiency symptoms present. Large applications or soil building purposes are usually recommended. "Otential response to outrient addition is >90%.	Low Potential "hidde hunger" or sub deficiency. Pote response to nui addition is 60 to	n Supply -clinical is barlet nital the pla prital build-u is 90%. recomm Potenti to 60%	of this nutrient y adequate for it, and o is still nended. al response to addition is 30	Supply of this nutrier supply of this nutrier and and only maintenance applica rates are recomment Potential response to nutrient addition is 5 30%.	t is The level is ex may be detrim growth (i.e. ph tion may contribute ded. ground and su Drawdown is i	ccessive and lental to plant lytotoxic, and e to pollution of trace waters. recommended. onse to nutrient %.	environment. Drawdown: The utilise residual s reason to apply Adequate. • g/sqm measure	e objective nutrient m e objective nutrient m oil nutrients. There is fertiliser when soil tes ements are based on nd selected soil depth	anagement is to no agronomic it levels exceed soil bulk density o
Very Low Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.	Potential "hidde hunger", or sub deficiency. Pote response to nui addition is 60 to	n Supply -clinical is barlet nital the pla prital build-u is 90%. recomm Potenti to 60%	Marginal of this nutrient y adequate for y adequate for is still hended. a dresponse to a ddition is 30	Supply of this nutrier supply of this nutrier and and only maintenance applica rates are recomment Potential response to nutrient addition is 5 30%.	t is The level is ex may be detrim growth (i.e. ph tion may contribute ded. ground and su Drawdown is i		environment. Drawdown: The utilise residual s reason to apply Adequate. • g/sqm measure	objective nutrient ma oil nutrients. There is fertiliser when soil tes ements are based on nd selected soil depth	anagement is to no agronomic it levels exceed soil bulk density o
Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended. Potential response to nutrient addition is >90%.	Potential "hidde hunger", or sub deficiency. Pote response to nui addition is 60 to	en Supply ential is barel prital build-u trient 90%. Pecom Potentin to 60%	of this nutrient y adequate for it, and o is still nended. al response to addition is 30	Supply of this nutrier adequate for the plan and and only maintenance applica rates are recommen- Potential response to nutrient addition is 5 30%.	t is The level is ex may be detrim growth (i.e. ph tion may contribute ded. ground and su Drawdown is i		environment. Drawdown: The utilise residual s reason to apply Adequate. • g/sqm measur 1.33 tonne/m ³ a	a objective nutrient m oil nutrients. There is fertiliser when soil tes ements are based on nd selected soil depth	anagement is to no agronomic it levels exceed soil bulk density o
Crowth is likely to be severely depressed and deficiency symptoms present Large applications for usually applications for usually applications of usua	Potential "hidde hunger", or sub deficiency. Pote response to nui addition is 60 to	en	of this nutrient y adequate for the and bis still nended. al response to addition is 30 hangeable <i>I</i> ns-Evans Buff of Base Catio	Acidity Acidity acidential Acidity Acidity acidential Acidity acidential Acidity acidential acidity acidential acidity acidit	ti is The level is estimated by the detring growth (i.e. but the detring g	Physical Texture: Colour:	environment. Drawdown: The utilise residual s reason to apply Adequate. • g/sqm measur 1.33 tonne/m ³ av	e objective nutrient m oli nutrients. There is fertiliser when soil tes ments are based on nd selected soil depth	anagement is to no agronomic it levels exceed soil bulk density o
Phosphorus Satur 0.15 0.15 0.15 0.11 0.15 0.11 Hig	ration Index	en	of this nutrient y adequate for the and pended. al response to addition is 30 hangeable / ns-Evans Buff of Base Catio Cation Exch. C	Supply of this nutrier adequate for the plan and and only maintenance applica rates are recommenen Potential response to solve. Acidity fer pH (BpH): ns (meq/100g ⁻¹) Capacity (eCEC):	The level is estimated by the detrine may be detrined by the	Physical Texture: Colour: Estimated	environment. Drawdown: The utilise residual s reason to apply Adequate. • g/sqm measur 1.33 tonne/m ³ a	e objective nutrient m oil nutrients. There is fertiliser when soil tes ements are based on nd selected soil depth	Gandy Loar 10 - 20%
Sovieth is likely to be severely depressed and lefticiency symptoms present. Large applications or soil building purposes are usually recommended. Outrient addition is >90%.	Potential "hidde hunger", or sub deficiency. Pote response to nui addition is 60 to	enclinical antial intent o 90%. Supply solution o ecommon recommon potenti- nutrient to 60% x Excl Adan Sum Eff. C Base	of this nutrient y adequate for the and pended. al response to a ddition is 30 hangeable / hans-Evans Buff of Base Catio Cation Exch. C Saturation (%	Supply of this nutrier supply of this nutrier and and only maintenance applica rates are recomment Potential response to nutrient addition is 5 30%. Acidity fer pH (BpH): nns (meq/100g ⁻¹) capacity (eCEC): 6):	 The level is example, the image of the image of	Physical Texture: Colour: Estimated Size:	environment. Drawdown: The utilise residual s reason to apply Adequate. • g/sqm measur. 1.33 tonne/m³ a	e objective nutrient ma oil nutrients. There is fertiliser when soil tes menents are based on nd selected soil depth on S Fine	Sandy Loar 10 - 20% 10 - 20% 10 - 20% 10 - 10mm
Sovieth is likely to be severely depressed and lefticiency symptoms present. Large applications or soil building purposes are usually recommended. Outrient addition is >90%.	ration Index	en	of this nutrient y adequate for the and pended al response to addition is 30 hangeable / hans-Evans Buff of Base Catio Cation Exch. C Saturation (% angeable Acid	Supply of this nutrier Supply of this nutrier and and only maintenance applica rates are recomment Potential response to nutrient addition is 5 30%. Acidity For pH (BpH): Ins (meq/100g ⁻¹) Capacity (eCEC): 6): dity (meq/100g ⁻¹)	 The level is example, the image of the image of	Physical Texture: Colour: Estimated Size: Gravel con	environment. Drawdown: The utilise residual s reason to apply Adequate. • g/sqm measur. 1.33 tonne/m³ al Descriptic clay content:	e objective nutrient ma oil nutrients. There is fertiliser when soll tes menents are based on nd selected soil depth on S Fine I	Sandy Loar 10 - 209 6 (1 - 10mm Not gravell
Phosphorus Satur 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05	Potential "hidd hunger", or sub deficiency. Pote response to nul addition is 60 to	en	of this nutrient y adequate for the and pended. al response to a ddition is 30 hangeable / hans-Evans Buff of Base Catio Cation Exch. C Saturation (%	Supply of this nutrier Supply of this nutrier and and only maintenance applica rates are recomment Potential response to nutrient addition is 5 30%. Acidity For pH (BpH): Ins (meq/100g ⁻¹) Capacity (eCEC): 6): dity (meq/100g ⁻¹)	 The level is example, the image of the image of	Physical Texture: Colour: Estimated Size: Gravel con Aggregate	environment. Drawdown: The utilise residual s reason to apply Adequate. • d/sqm measur 1.33 tonne/m² al Descriptic clay content: strength:	e objective nutrient ma oil nutrients. There is fertiliser when soll tes menents are based on nd selected soil depth on S Fine I	Sandy Loar 10 - 20% (1 - 10mr Not gravell edal - Wea
Crowth is likely to be severely depressed and deficiency symptoms present. Large applications are usually recommended. Potential response to nutrient addition is >90%.	Potential "hidd hunger", or sub deficiency. Pote response to nul addition is 60 to	en	of this nutrient y adequate for the and pended. al response to a difficient is 30 hangeable / of Base Catio Cation Exch. C Saturation (% angeable Acio angeable Acio	Supply of this nutrier and and only maintenance applica rates are recomment Potential response to solve. Acidity er pH (BpH): ons (meq/100g ⁻¹) capacity (eCEC): 6): dity (meq/100g ⁻¹) dity (%): Rate	 The level is example, the image of the image of	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural	environment. Drawdown: The utilise residual is reason to apply Adequate. • dysqm measur 1.33 tonne/m³ al Descriptic clay content: strength: unit:	e objective nutrient m oli nutrients. There is fertiliser when soil tes ments are based on nd selected soil depth on S Fine I P	Sandy Loar 10 - 20% 4 (1 - 10mm Not gravell crum
Phosphorus Satur 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.05 0.06 0.05	Potential "hidd hunger", or sub deficiency. Pote response to nul addition is 60 to	en	of this nutrient ty adequate for the and pended. al response to addition is 30 hangeable A of Base Catio Cation Exch. C Saturation (% angeable Acid angeable Acid	Supply of this nutrier and and only maintenance applica rates are recomment Potential response to solve. Acidity er pH (BpH): ons (meq/100g ⁻¹) capacity (eCEC): 6): dity (meq/100g ⁻¹) dity (%): Rate	The level is expression may be detrim may be detrimed at the may be detrimed at t	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural of Potential in	environment. Drawdown: The utilise residual is reason to apply Adequate. • g/sqm measur 1.33 tonne/m³ al Description clay content: strength: unit: nfiltration rate	e objective nutrient m oli nutrients. There is fertiliser when soil tes ments are based on nd selected soil depth on S Fine I P	Sandy Loar 10 - 20 4 (1 - 10mm Not gravell edal - Wea Crum Rapi
Phosphorus Satur 0.15 0.06 0.15 0.15 Excessive. Exceeds	Potential "hidde hunger", or sub deficiency. Pote response to nul addition is 60 to ration Inde:	en - cinical intent intent 90%. Supply is baref it is plane potenti nutrient build-ur Potenti nutrient bold ecom Potenti nutrient bold ecom Potenti nutrient bold Potenti Dotenti Dotenti Potenti Nutrient Base Potenti Dotenti Potenti Dotenti Potenti Dotenti Potenti Potenti Potenti Potenti Potenti Potenti Potenti Potenti Potenti Dotenti Potent	of this nutrient y adequate for the and pended. al response to a difficient is 30 hangeable / of Base Catio Cation Exch. C Saturation (% angeable Acio angeable Acio	Acidity Acidity For pH (BpH): anacity (eCEC): b): dity (meq/100g ⁻¹) dity (%): Rate D (g/sqm):	 tis The level is estimation of the level is estimation of the provide definition of the provide definition of the provided of the pro	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural i Potential ir Permeabili	environment. Drawdown: The utilise residual is reason to apply Adequate. • g/sgm measur. 1.33 tonne/m³ al Description clay content: strength: unit: unit: unit: ty (mm/hr):	e objective nutrient ma oil nutrients. There is fertiliser when soil tes ements are based on nd selected soil depth on S Fine I P	Gandy Loar 10 - 20% 4 (1 - 10mm Not gravell edal - Wea Crum Rapi >12
Crowth is likely to be severely depressed and deficiency symptoms present. Large applications present arge applications protential response to nutrient addition is >90%. Phosphorus Satur 0.15 0.06 Adequate 0 0.15 Excessive. Exceeds threshold. Implement	Potential "hidd hunger", or sub deficiency. Pote response to nul addition is 60 to ration Index xcessive	 Supply Supply	of this nutrient ty adequate for ty adequate for the and pended. al response to a difficient is 30 hangeable A of Base Catio Cation Exch. C Saturation (% angeable Acid angeable Acid	Supply of this nutrier and and only maintenance applica rates are recomment Potential response to available t	The level is expression may be detrim may be detrimed at the may be detrimed at t	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural i Potential ir Permeabili Calculated	environment. Drawdown: The utilise residual is reason to apply Adequate. • dysqm measur. 1.33 tonne/m³ al Description clay content: attent: strength: unit: nfiltration rate ty (mm/hr): EC _{SE} (dS/m	e objective nutrient ma oil nutrients. There is fertiliser when soil tes ements are based on nd selected soil depth on S Fine I P e:):	Gandy Loar 10 - 20% 4 (1 - 10mr Not gravell edal - Wea Crum Rapi >12 0.
Phosphorus Satur 0.15 0.06 0.15 0.15 Excessive. Exceeds	Potential "hidd hunger", or sub deficiency. Pote response to nul addition is 60 to ration Index xcessive g ≥ e environmental nt improved P ice potential for	en	of this nutrient ty adequate for ty adequate for ty adequate for the add la response to a difficient is 30 hangeable A cation Exch. C Saturation (% angeable Acid angeable Ac	Supply of this nutrier and and only maintenance applica rates are recomment Potential response to available t	tis The level is estimated by the definition may be defined by the definition of the provided of	Physical Texture: Colour: Estimated Size: Gravel con Aggregate Structural ir Potential ir Permeabili Calculated – Non-s	environment. Drawdown: The utilise residual is reason to apply Adequate. • dysqm measur. 1.33 tonne/m³ al Description clay content: attent: strength: unit: nfiltration rate ty (mm/hr): EC _{SE} (dS/m	e objective nutrient ma oil nutrients. There is fertiliser when soil tes ements are based on nd selected soil depth on S Fine I P e:): ity effects on	Gandy Loar 10 - 20% 4 (1 - 10mr Not gravell edal - Wea Crum Rapi >12 0.

Consultant: Chantal Milner

Authorised Signatory: Simon Leake

Date Report Generated 16/10/2017

METHOD REFERENCES:

 $\begin{array}{l} ph (1;5 H_0) - Rayment & Higginson (1992) 4A1, \\ ph (1;5 CaC) - Rayment & Higginson (1992) 4B1, \\ EC (1;5) - Rayment & Higginson (1992) 5A2, \\ Nitrate - Rayment & Higginson (1992) 5A2, \\ Nitrate - Rayment & Higginson (1992) 7B1 \\ Alumnium - SE3 Lin-house, \\ Buffer pH and Hydrogen - Adams-Evans (1972) \\ Tature Stucture Order (1992), Subtrate - Munchi Charlos, CuD, B. Mehlich 3 (1984), \\ Buffer pH and Hydrogen - Adams-Evans (1972) \\ Tature Stucture Order, Munchi Charl, CuD, B. Mehlich 3 (1984), \\ Northcoter (1992), Stucture - Munchi (1991), Colour - "Munsell" (2000)) \\ \end{array}$

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report.

Disclaimer: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full.

Appendix F: UCL Calculations

	А	В	С	D	E	F	G	Н	I	J	К	L
1					UCL Statis	tics for Unc	ensored Full D)ata Sets				
2												
3	Dat	User Sele e/Time of Co	cted Options	23/10/2017	8.02.50 414							
4	Date		From File	WorkSheet.								
5		Fu	Il Precision	OFF	~15							
6 7		Confidence		95%								
8		f Bootstrap		2000								
9		•	•									
10												
11	Arsenic											
12												
13						General	Statistics					
14			Tota	Number of C	bservations	14			Numbe	er of Distinct	Observations	4
15									Numbe	r of Missing	Observations	0
16					Minimum	4					Mean	4.786
17					Maximum	8					Median	4
18					SD	1.188				Std.	Error of Mean	0.318
19				Coefficient	of Variation	0.248					Skewness	1.762
20						N						
21					ant Ctatiatia		GOF Test		Shanira W			
22				Shapiro Wilk T Shapiro Wilk C		0.719 0.874		Data Na	-	ilk GOF Tes 5% Significa		
23			5% 3		est Statistic	0.874				GOF Test		
24			I	5% Lilliefors C		0.237		Data No		5% Significa	nce l evel	
25			`				5% Significanc			o /o olgrinica		
26 27					Bala Not							
27					As	suming Nor	mal Distributio	'n				
29			95% N	ormal UCL		•			UCLs (Adjı	usted for Ske	ewness)	
30				95% Stud	dent's-t UCL	5.348			95% Adjuste	ed-CLT UCL	(Chen-1995)	5.468
31									95% Modifi	ied-t UCL (Jo	ohnson-1978)	5.373
32												
33						Gamma	GOF Test					
34				A-D T	est Statistic	1.559			-	Gamma G		
35					critical Value	0.734	Dat				gnificance Lev	vel
36					est Statistic	0.336		-	-	ff Gamma G		
37					critical Value	0.228				ted at 5% Si	gnificance Lev	vel
38				Da	ta Not Gamr	na Distribut	ed at 5% Signi	ificance Le	vel			
39						0	0					
40					k hat (MLE)	20.92	Statistics		k	star (bias or	prrected MLE)	16.49
41					ta hat (MLE)	0.229					prrected MLE)	0.29
42					u hat (MLE)	585.8			meta		as corrected)	461.6
43 44			М	LE Mean (bia		4.786					as corrected)	1.179
44 45				(0.0	,,	•			Approximate		e Value (0.05)	412.8
45			Adju	sted Level of	Significance	0.0312					Square Value	
47												
48					Ass	suming Garr	nma Distributio	'n				
49	95	5% Approxir	mate Gamma	a UCL (use wl	hen n>=50))	5.352		95% Ad	justed Gam	ma UCL (us	e when n<50)	5.432
50												
51							I GOF Test					
52			ŝ	Shapiro Wilk T	est Statistic	0.75		-		gnormal GO		
53			5% S	Shapiro Wilk C		0.874			-	at 5% Signific		
54					est Statistic	0.333				ormal GOF		
55			Ę	5% Lilliefors C		0.237			.ognormal a	at 5% Signific	ance Level	
56					Data Not L	ognormal a	t 5% Significar	nce Level				
57												

	A	В	С	D	Е	F	G	Н	I	J	К	L
58						Lognorma	l Statistics				1	
59			I	Vinimum of L	ogged Data	1.386				Mean of	logged Data	1.542
60			N	1aximum of L	ogged Data	2.079				SD of	logged Data	0.219
61												
62					Assu	iming Logno	ormal Distribu	ution				
63					95% H-UCL	5.347			90%	Chebyshev (MVUE) UCL	5.618
64			95% (Chebyshev (I	MVUE) UCL	6			97.5%	Chebyshev (MVUE) UCL	6.529
65			99% (Chebyshev (I	VVUE) UCL	7.569						
66												
67					Nonparame	tric Distribu	tion Free UC	L Statistics				
68				C	Data do not f	ollow a Disc	ernible Distri	ibution (0.08	5)			
69												
70					•		tribution Free	e UCLs				
71					% CLT UCL	5.308				95% Ja	ckknife UCL	5.348
72			95%	Standard Bo	otstrap UCL	N/A				95% Boo	tstrap-t UCL	N/A
73				5% Hall's Bo		N/A			95%	Percentile Bo	otstrap UCL	N/A
74			ę	95% BCA Bo	otstrap UCL	N/A						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	5.738			95% Cł	nebyshev(Me	an, Sd) UCL	6.17
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	6.769			99% Cł	nebyshev(Me	an, Sd) UCL	7.946
77												
78							UCL to Use					
79				95% Stud	dent's-t UCL	5.348			-	or 95% Mc	dified-t UCL	5.373
80												
81	N		tions regardir									L.
82		These reco	mmendation								l laci (2002)	
83			and Singh a		003). Howev					d data sets.		
84				For ad	ditional insigh	nt the user m	ay want to co	onsult a stati	stician.			
85												

	А	В	С	D	Е	F	G	Н	I	J	К	L
1					UCL Statis	tics for Unc	ensored Full	Data Sets				
2		Lissa Osla										
3	Det	e/Time of C	ected Options	23/10/2017	0.01.10 AM							
4	Dat		From File	WorkSheet.								
5		Fu	Ill Precision	OFF	~15							
6			Coefficient	95%								
7		f Bootstrap		2000								
° 9												
10												
	Chromium											
12												
13						General	Statistics					
14			Total	Number of C	bservations	14			Numbe	r of Distinct Ol	oservations	7
15									Numbe	r of Missing Ol	oservations	0
16					Minimum	6					Mean	10.57
17					Maximum	19					Median	9
18					SD	4.237				Std. Er	ror of Mean	1.133
19				Coefficient	of Variation	0.401					Skewness	0.73
20												
21							GOF Test					
22				hapiro Wilk T		0.866				lk GOF Test		
23			5% S	hapiro Wilk C		0.874		Data No		5% Significand	e Level	
24					est Statistic	0.229				GOF Test		
25			5	% Lilliefors C		0.237				t 5% Significa	nce Level	
26				Data	appear Appr	oximate No	ormal at 5% S	Significance	Level			
27					^ ~	uming Nor	mal Distribut	ion				
28			95% Nr	ormal UCL	A5:	suming Nor			UCLe (Adiu	sted for Skew		
29			95 % NC		dent's-t UCL	12.58				ed-CLT UCL (· · · · · · · · · · · · · · · · · · ·	12.67
30				5570 0140		12.00				ed-t UCL (Joh	,	12.61
31 32												12.01
33						Gamma	GOF Test					
34				A-D T	est Statistic	0.796		Ande	rson-Darling	Gamma GOF	Test	
35				5% A-D C	ritical Value	0.736	D	ata Not Garr	nma Distribut	ed at 5% Sign	ificance Leve	əl
36				K-S T	est Statistic	0.246		Kolmo	grov-Smirno	ff Gamma GO	F Test	
37				5% K-S C	ritical Value	0.229	D	ata Not Garr	nma Distribut	ed at 5% Sign	ificance Leve	el
38				Da	ta Not Gamn	na Distribut	ed at 5% Sig	nificance Le	evel			
39												
40						Gamma	Statistics					
41					k hat (MLE)	7.205			k	star (bias corre	ected MLE)	5.709
42					a hat (MLE)	1.467			Theta	star (bias corre		1.852
43					u hat (MLE)	201.7				nu star (bias		159.8
44			MI	.E Mean (bia	s corrected)	10.57				MLE Sd (bias		4.425
45					o					Chi Square V		131.6
46			Adjus	sted Level of	Significance	0.0312			A	djusted Chi Sc	luare Value	128.2
47					A -	umine O-		tion				
48	0	5% Approvi	mate Gamma			12.84	nma Distribut		liusted Com	na UCL (use v	when n = E()	13.18
49	9:	o vo Abbroxi	male Gamma	UCL (USE WI	ien n/=50))	12.04		90% AC	ijusteu Gami	na UCL (USE V	vuen n≤oU)	13.16
50						Lognorma	I GOF Test					
51 52			9	hapiro Wilk T	est Statistic	0.885		Sha	oiro Wilk Loo	normal GOF	Test	
52 52				hapiro Wilk C		0.883		-	-	at 5% Signific		
53 54			5700	•	est Statistic	0.24			-	ormal GOF Te		
54 55			5	% Lilliefors C		0.237			-	t 5% Significar		
56					opear Approx		normal at 5%		-	3		
57						- 3						
57												

	А	В	С	D	E	F	G	Н	I	J	K	L
58						Lognorma	l Statistics		-			
59			ľ	Minimum of L	ogged Data	1.792				Mean of	logged Data	2.287
60			N	laximum of L	ogged Data	2.944				SD of	logged Data	0.386
61												
62					Assı	iming Logno	ormal Distribu	ution				
63					95% H-UCL	13.1			90%	Chebyshev (MVUE) UCL	13.88
64			95% (Chebyshev (I	MVUE) UCL	15.38			97.5%	Chebyshev (MVUE) UCL	17.47
65			99% (Chebyshev (I	MVUE) UCL	21.58						
66												
67					Nonparame	tric Distribu	tion Free UC	L Statistics				
68				Data appear	to follow a	Discernible	Distribution a	at 5% Signif	icance Leve	el		
69												
70					Nonpar	ametric Dis	tribution Free	UCLs				
71				95	% CLT UCL	12.43				95% Ja	ckknife UCL	12.58
72			95%	Standard Bo	otstrap UCL	12.36				95% Boo	tstrap-t UCL	12.88
73			9	5% Hall's Bo	otstrap UCL	12.47			95%	Percentile Bo	otstrap UCL	12.29
74				95% BCA Bo	•	12.71						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	13.97			95% Cł	nebyshev(Me	an, Sd) UCL	15.51
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	17.64			99% Cł	nebyshev(Me	an, Sd) UCL	21.84
77												
78						Suggested	UCL to Use					
79				95% Stu	dent's-t UCL	12.58						
80												
81	N			-						nost appropri		
82		These reco	mmendation	s are based	upon the res	ults of the si	mulation stud	lies summa	rized in Sing	h, Singh, and	laci (2002)	
83			and Singh a	and Singh (2	003). Howev	er, simulatio	ns results wi	ll not cover a	all Real Worl	d data sets.		
84				For ad	ditional insigh	nt the user m	ay want to co	onsult a stati	stician.			
85												

	А	В	С	D	E	F	G	Н	I	J	К	L
1					UCL Statis	tics for Unce	nsored Full	Data Sets				
2												
3	Det		ected Options		0.05.00 AM							
4	Dat	e/Time of C	From File	23/10/2017 WorkSheet								
5		Fu	Ill Precision	OFF	XIS							
6		Confidence		95%								
7		f Bootstrap		2000								
8		Doototiap	oporationo	2000								
9 10												
11	Lead											
12												
13						General S	Statistics					
14			Total	Number of C	bservations	14			Numbe	r of Distinct Ob	servations	13
15									Numbe	r of Missing Ob	servations	0
16					Minimum	8					Mean	25.43
17					Maximum	73					Median	19.5
18					SD	18.88				Std. Err	or of Mean	5.047
19				Coefficient	of Variation	0.743					Skewness	1.605
20												
21						Normal G	OF Test					
22				Shapiro Wilk T		0.817				lk GOF Test		
23			5% S	hapiro Wilk C		0.874		Data No		5% Significance	e Level	
24					est Statistic	0.223				GOF Test		
25			5	5% Lilliefors C		0.237				t 5% Significan	ice Level	
26				Data	appear Appr	oximate Nor	mal at 5% S	Significance	Level			
27								•				
28			05% N/	ormal UCL	Ass	suming Norn	iai Distributi			istad for Skow	nocc)	
29			95% NG		dent's-t UCL	34.37				ed-CLT UCL (C		36.04
30				93 /8 Stu		54.57			-	ed-t UCL (Johr		34.73
31									33 /8 WOUIN		13011-1370)	54.75
32 33						Gamma G	OF Test					
33				A-D 1	est Statistic	0.41		Ander	rson-Darling	Gamma GOF	Test	
35				5% A-D C	critical Value	0.744	Detecter		•	istributed at 5%		ce Level
36				K-S 1	est Statistic	0.14				ff Gamma GOI	-	
37				5% K-S C	critical Value	0.231	Detected	data appea	ar Gamma D	istributed at 5%	6 Significand	ce Level
38				Detected	data appear	Gamma Dis	tributed at {	5% Significa	nce Level			
39												
40						Gamma S	Statistics					
41					k hat (MLE)	2.497			k	star (bias corre	ected MLE)	2.01
42				The	ta hat (MLE)	10.18			Theta	star (bias corre	ected MLE)	12.65
43				r	u hat (MLE)	69.91				nu star (bias		56.27
44			M	LE Mean (bia	s corrected)	25.43				MLE Sd (bias		17.94
45										e Chi Square V		40.03
46			Adjus	sted Level of	Significance	0.0312			A	djusted Chi Sq	uare Value	38.21
47												
48						uming Gam	ma Distribut					07.44
49	9	5% Approxi	mate Gamma	UCL (use w	hen n>=50))	35.75		95% Ac	Ijusted Gami	na UCL (use w	/hen n<50)	37.44
50						1.0000000000						
51				hoping M/III 7	oot Ctoti-ti	Lognormal	GUF Test	06				
52				Shapiro Wilk T hapiro Wilk C		0.962 0.874		-	-	normal GOF 1 at 5% Significa		
53			ე% წ	•	est Statistic	0.874			-	at 5% Significator		
54			E	Lilliefors 1		0.114				at 5% Significa		
55					Data appear		at 5% Signif		-	at 070 Orginii Ce		
56					-ara appear	_ognormal a			•			
57												

	А	В	С	D	E	F	G	Н	I	J	K	L
58						Lognorma	l Statistics		-			
59			ľ	Vinimum of L	ogged Data	2.079				Mean of	logged Data	3.022
60			N	laximum of L	ogged Data	4.29				SD of	logged Data	0.658
61												
62					Assu	iming Logno	ormal Distribu	ution				
63					95% H-UCL	38.74			90%	Chebyshev (MVUE) UCL	38.87
64			95% (Chebyshev (I	MVUE) UCL	45.12			97.5%	Chebyshev (MVUE) UCL	53.81
65			99% (Chebyshev (I	MVUE) UCL	70.87						
66												
67					Nonparame	tric Distribu	tion Free UC	L Statistics				
68				Data appear	to follow a	Discernible	Distribution a	at 5% Signif	icance Leve			
69												
70					Nonpar	ametric Dis	tribution Free	e UCLs				
71				95	% CLT UCL	33.73				95% Ja	ckknife UCL	34.37
72			95%	Standard Bo	otstrap UCL	33.5				95% Boo	tstrap-t UCL	40.16
73				5% Hall's Bo		66.06			95%	Percentile Bo	otstrap UCL	34
74			ę	95% BCA Bo	otstrap UCL	36.14						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	40.57				nebyshev(Me	,	47.43
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	56.95			99% Cł	nebyshev(Me	an, Sd) UCL	75.64
77												
78						Suggested	UCL to Use					
79				95% Stu	dent's-t UCL	34.37			-			
80												
81	N		tions regardir	-								
82		These reco	mmendation								laci (2002)	
83			and Singh a		003). Howev					d data sets.		
84				For ad	ditional insigh	nt the user m	ay want to co	onsult a stati	stician.			
85												

	А	В	С	D	E	F	G	Н	I	J	к	L	-
1					UCL Statis	tics for Unc	ensored Full D	ata Sets					
2													
3			ected Options										
4	Dat	e/Time of C	Computation	23/10/2017 8:									
5			From File	WorkSheet.xl	S								
6		-	ull Precision	OFF									
7			e Coefficient	95% 2000									
8	Number o	n bootstrap	Operations	2000									
9													
10	Nickel												
11 12													
12						General	Statistics						
14			Tota	I Number of Ob	servations	14			Numbe	r of Distinct (Observations	5	
15									Number	r of Missing (Observations	0	
16					Minimum	1					Mean	2.7	786
17					Maximum	7					Median	2	
18					SD	1.477				Std. E	Error of Mean	0.3	395
19				Coefficient o	f Variation	0.53					Skewness	1.9	932
20							I					1	
21						Normal	GOF Test						
22			ę	Shapiro Wilk Te	st Statistic	0.773			Shapiro Wi	lk GOF Test	t		
23			5% 5	Shapiro Wilk Cri	tical Value	0.874		Data Not	Normal at §	5% Significar	nce Level		
24				Lilliefors Te	st Statistic	0.274			Lilliefors	GOF Test			
25			Ę	5% Lilliefors Cri	tical Value	0.237		Data Not	Normal at §	5% Significar	nce Level		
26					Data Not	Normal at !	5% Significance	e Level					
27													
28					As	suming Nor	mal Distributio						
29			95% N	ormal UCL						sted for Ske			
29 30			95% N	ormal UCL 95% Stude	ent's-t UCL	3.485		ç	95% Adjuste	ed-CLT UCL	(Chen-1995)		653
30 31			95% N		ent's-t UCL	3.485		ç	95% Adjuste	ed-CLT UCL			653 519
30 31 32			95% N		ent's-t UCL		COE Toot	ç	95% Adjuste	ed-CLT UCL	(Chen-1995)		
30 31 32 33			95% N	95% Stude		Gamma	GOF Test	9	95% Adjuste 95% Modifie	ed-CLT UCL	(Chen-1995) hnson-1978)		
30 31 32 33 34			95% N	95% Stude	st Statistic	Gamma 0.957		Anders	95% Adjuste 95% Modifie	ed-CLT UCL ed-t UCL (Jo Gamma GC	(Chen-1995) hhnson-1978) DF Test	3.5	
30 31 32 33 34 35			95% N	95% Stude A-D Te 5% A-D Cri	st Statistic tical Value	Gamma 0.957 0.738		S Anders a Not Gami	95% Adjuste 95% Modifie son-Darling na Distribut	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig	(Chen-1995) hhnson-1978) DF Test gnificance Le	3.5	
30 31 32 33 34 35 36			95% N	95% Stude A-D Te 5% A-D Cri K-S Te	st Statistic tical Value st Statistic	Gamma 0.957 0.738 0.277	Data	Anders a Not Gamr Kolmog	95% Adjuste 95% Modifie son-Darling ma Distribut rov-Smirnol	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test	vel	
30 31 32 33 34 35 36 37			95% N	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri	st Statistic tical Value st Statistic tical Value	Gamma 0.957 0.738 0.277 0.229	Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirno na Distribut	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G	(Chen-1995) hhnson-1978) DF Test gnificance Le	vel	
30 31 32 33 34 35 36 37 38			95% N	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri	st Statistic tical Value st Statistic tical Value	Gamma 0.957 0.738 0.277 0.229	Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirno na Distribut	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test	vel	
30 31 32 33 34 35 36 37			95% N	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri	st Statistic tical Value st Statistic tical Value	Gamma 0.957 0.738 0.277 0.229 na Distribut	Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirno na Distribut	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test	vel	
30 31 32 33 34 35 36 37 38 39			95% N	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data	st Statistic tical Value st Statistic tical Value	Gamma 0.957 0.738 0.277 0.229 na Distribut	Data Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirnor na Distribut rel	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test	3.5 vel vel	
30 31 32 33 34 35 36 37 38 39 40			95% N	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data	st Statistic tical Value st Statistic tical Value Not Gamm	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma	Data Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirno na Distribut rel	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co	(Chen-1995) hhnson-1978) DF Test gnificance Le OF Test gnificance Le	vel vel 3.8	519
30 31 32 33 34 35 36 37 38 39 40 41			95% N	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE)	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901	Data Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirno na Distribut rel	ed-CLT UCL ed-t UCL (Jo ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le	vel vel 3.8 0.7	519 398 715
30 31 32 33 34 35 36 37 38 39 40 41 42				95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE)	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568	Data Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirno na Distribut rel	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co nu star (bia	(Chen-1995) ohnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) rrected MLE)	3.5 vel vel 3.8 0.7 109.3	519 398 715 2
30 31 32 33 34 35 36 37 38 39 40 41 42 43				95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k K Theta nu	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE)	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2	Data Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirno na Distribut rel k	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co star (bias co nu star (bias	(Chen-1995) hhnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) rrected MLE) as corrected)	vel vel 3.8 0.7 109.3 1.4	519 398 715 2 111
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44				95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k K Theta nu	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected)	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2	Data Data	Anders a Not Gam Kolmogi a Not Gam	95% Adjuste 95% Modifie son-Darling ma Distribut rov-Smirnor na Distribut rel k Theta s	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co star (bias co nu star (bia MLE Sd (bia e Chi Square	(Chen-1995) ohnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) rrected MLE) as corrected) as corrected)	vel vel 3.8 0.7 109.3 1.4 86.0	519 398 715 2 111 04
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45				95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta nu ILE Mean (bias	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312	Data Data Data Data	Anders a Not Gamr Kolmog a Not Gamr ficance Lev	95% Adjuste 95% Modifie son-Darling ma Distribut rov-Smirnor na Distribut rel k Theta s	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co star (bias co nu star (bia MLE Sd (bia e Chi Square	(Chen-1995) ohnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) as corrected) as corrected) value (0.05)	vel vel 3.8 0.7 109.3 1.4 86.0	519 398 715 2 111 04
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46			M	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta nu ILE Mean (bias sted Level of Si	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312	Data Data	Anders a Not Gam Kolmogi a Not Gam ficance Lev	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirnor na Distribut rel k Theta so Approximate At	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co star (bias co nu star (bia MLE Sd (bia e Chi Square djusted Chi S	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) as corrected) as corrected) value (0.05) Square Value	vel vel 3.5 0.7 109.3 1.4 86.1 83.3	519 398 715 2 111 04 32
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47		5% Approx	M	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta nu ILE Mean (bias	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312	Data Data Data Data	Anders a Not Gam Kolmogi a Not Gam ficance Lev	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirnor na Distribut rel k Theta so Approximate At	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co star (bias co nu star (bia MLE Sd (bia e Chi Square djusted Chi S	(Chen-1995) ohnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) as corrected) as corrected) value (0.05)	vel vel 3.5 0.7 109.3 1.4 86.1 83.3	519 398 715 2 111 04
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	9	5% Approx	M	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta nu ILE Mean (bias sted Level of Si	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312 suming Gan 3.534	Data Data Data Data Data Data Data Data	Anders a Not Gam Kolmogi a Not Gam ficance Lev	95% Adjuste 95% Modifie son-Darling na Distribut rov-Smirnor na Distribut rel k Theta so Approximate At	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co star (bias co nu star (bia MLE Sd (bia e Chi Square djusted Chi S	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) as corrected) as corrected) value (0.05) Square Value	vel vel 3.5 0.7 109.3 1.4 86.1 83.3	519 398 715 2 111 04 32
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	9	5% Approx	M Adju	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta nu ILE Mean (bias sted Level of Si a UCL (use whe	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass en n>=50))	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312 suming Gan 3.534	Data Data Data Data	Anders a Not Gam Kolmogi a Not Gam ficance Lev	95% Adjuste 95% Adjuste 95% Modifie son-Darling ma Distribut rov-Smirnot ma Distribut rel k Theta Approximate At usted Gamr	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co star (bias co star (bias co nu star (bias MLE Sd (bia e Chi Square djusted Chi S na UCL (use	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) as corrected) as corrected) as corrected) value (0.05) Square Value e when n<50)	vel vel 3.5 0.7 109.3 1.4 86.1 83.3	519 398 715 2 111 04 32
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	9	5% Approx	M Adju imate Gamma	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta nu ILE Mean (bias sted Level of Si a UCL (use whe	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass en n>=50)) st Statistic	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312 3.534 3.534	Data Data ed at 5% Signif Statistics mma Distributio I GOF Test	Anders a Not Gamr Kolmogi a Not Gamr ficance Lev ficance Lev // n 95% Adj	95% Adjuste 95% Modifie 95% Modifie 95% Modifie 95% Modifie 95% Modifie rov-Smirnol na Distribut rov-Smirnol na Distribut rel k Theta Approximate Au usted Gamr	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co nu star	(Chen-1995) ohnson-1978) DF Test gnificance Le OF Test gnificance Le oF Test gnificance Le rrected MLE) as corrected) as corrected)	 3.5 vel vel 3.8 0.7 109.3 1.4 86.1 83.3 3.6 	519 398 715 2 111 04 32
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 43 44 45 46 47 48 49 50 51 52 53	9	5% Approx	M Adju imate Gamma	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data k Theta nu ILE Mean (bias sted Level of Si a UCL (use whe Shapiro Wilk Te Shapiro Wilk Cri	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass en n>=50)) st Statistic tical Value	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312 3.534 3.534 Lognorma 0.889 0.874	Data Data ed at 5% Signif Statistics mma Distributio I GOF Test	Anders a Not Gam Kolmogi a Not Gam ficance Lev ficance Lev // n 95% Adj Data appear	25% Adjuste 95% Modifie son-Darling na Distribut rov-Smirnor na Distribut rel k Theta Approximate Ar usted Gamr iro Wilk Log	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co nu star (bias diusted Chi S dijusted Chi S ma UCL (use normal GOI at 5% Signif	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le rrected MLE) as corrected) as corrected) Value (0.05) Square Value e when n<50) F Test ficance Level	 3.5 vel vel 3.8 0.7 109.3 1.4 86.1 83.3 3.6 	519 398 715 2 111 04 32
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54		5% Approx	M Adju timate Gamma	95% Stude A-D Te 5% A-D Cri K-S Te 5% K-S Cri Data 5% K-S Cri Data ILE Mean (bias sted Level of Si a UCL (use whe Shapiro Wilk Te Shapiro Wilk Tre	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass en n>=50)) st Statistic tical Value st Statistic	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312 3.534 cuming Gan 3.534 Lognorma 0.889 0.874 0.259	Data Data Data Idata Data Idata Data Data Data Data Data Data Data	Anders a Not Gamr Kolmogi a Not Gamr ficance Lev // n 95% Adj Oata appear Lilli	25% Adjuste 95% Adjuste 95% Modifie son-Darling ma Distribut rov-Smirnot ma Distribut rel k Theta Approximate Approximate Approximate Approximate Approximate Approximate Approximate Approximate Approximate	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co nu star (bias coi star (bias co nu star (bias coi nu star (bias coi star (bi star (bias coi star (biastar (bi star (biastar (bias	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le (OF Test gnificance Le rrected MLE) as corrected) as corrected) as corrected) as corrected) as corrected) as corrected) as corrected) F Test ficance Level Test	 3.5 vel vel 3.8 0.7 109.3 1.4 86.1 83.3 3.6 	519 398 715 2 111 04 32
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55		5% Approx	M Adju timate Gamma	95% Stude	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass en n>=50)) st Statistic tical Value st Statistic tical Value	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312 3.534 0.0312 suming Gan 3.534 Lognorma 0.889 0.874 0.259 0.237	Data Data ed at 5% Signit Statistics I GOF Test D	Anders a Not Gam Kolmog a Not Gam ficance Lev // n 95% Adj Shapi Data Appear Lilli Data Not L	25% Adjuste 95% Modifie 95% Modifie 95% Modifie na Distribut rov-Smirnor na Distribut rel k Theta Approximate Aquited Gamr iro Wilk Log Lognormal efors Lognor	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co nu star (bias diusted Chi S dijusted Chi S ma UCL (use normal GOI at 5% Signif	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le (OF Test gnificance Le rrected MLE) as corrected) as corrected) as corrected) as corrected) as corrected) as corrected) as corrected) F Test ficance Level Test	 3.5 vel vel 3.8 0.7 109.3 1.4 86.1 83.3 3.6 	519 398 715 2 111 04 32
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54		5% Approx	M Adju timate Gamma	95% Stude	st Statistic tical Value st Statistic tical Value Not Gamm hat (MLE) hat (MLE) hat (MLE) corrected) ignificance Ass en n>=50)) st Statistic tical Value st Statistic tical Value	Gamma 0.957 0.738 0.277 0.229 na Distribut Gamma 4.901 0.568 137.2 2.786 0.0312 3.534 0.0312 suming Gan 3.534 Lognorma 0.889 0.874 0.259 0.237	Data Data Data Idata Data Idata Data Data Data Data Data Data Data	Anders a Not Gam Kolmog a Not Gam ficance Lev // n 95% Adj Shapi Data appear Lilli Data Not L	25% Adjuste 95% Modifie 95% Modifie 95% Modifie na Distribut rov-Smirnor na Distribut rel k Theta Approximate Aquited Gamr iro Wilk Log Lognormal efors Lognor	ed-CLT UCL ed-t UCL (Jo Gamma GC ed at 5% Sig ff Gamma G ed at 5% Sig star (bias co nu star (bias coi star (bias co nu star (bias coi nu star (bias coi star (bi star (bias coi star (biastar (bi star (biastar (bias	(Chen-1995) hnson-1978) DF Test gnificance Le OF Test gnificance Le (OF Test gnificance Le rrected MLE) as corrected) as corrected) as corrected) as corrected) as corrected) as corrected) as corrected) F Test ficance Level Test	 3.5 vel vel 3.8 0.7 109.3 1.4 86.1 83.3 3.6 	519 398 715 2 111 04 32

	А	В	С	D	E	F	G	Н	I	J	K	L	
58						Lognorma	Statistics						
59			I	Minimum of L	ogged Data	0				Mean of	logged Data	0.919	
60			N	laximum of l	ogged Data	1.946		0.463					
61													
62	Assuming Lognormal Distribution												
63					95% H-UCL	3.612		3.821					
64			95% (Chebyshev (MVUE) UCL	4.298			97.5%	Chebyshev (MVUE) UCL	4.96	
65			99% (Chebyshev (MVUE) UCL	6.26							
66													
67					•		ion Free UC						
68	Data appear to follow a Discernible Distribution at 5% Significance Level												
69													
70	Nonparametric Distribution Free UCLs									3.485			
71					% CLT UCL	3.435		95% Jackknife UCL					
72				Standard Bo		3.42	95% Bootstrap-t UCL					3.993	
73				5% Hall's Bo	•	6.427			95%	Percentile Bo	otstrap UCL	3.429	
74				95% BCA Bo	•	3.571							
75				ebyshev(Me	. ,	3.97	95% Chebyshev(Mean, Sd) UCL					4.506	
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	5.251			99% Cł	nebyshev(Me	an, Sd) UCL	6.713	
77													
78						Suggested	UCL to Use						
79				95% Stu	dent's-t UCL	3.485				or 95% Mc	odified-t UCL	3.519	
80													
81	N		tions regardir									L.	
82		These reco	mmendation		-						l laci (2002)		
83			and Singh a				ns results wil			d data sets.			
84				For ad	ditional insigh	nt the user m	ay want to co	onsult a stati	stician.				
85													

	А	В	С	D	Е	F	G	Н	I	J	К	L	
1					UCL Statis	tics for Unc	ensored Full	Data Sets					
2		Liss - Osla											
3	Det	e/Time of C	ected Options	23/10/2017	0.00.26 AM								
4	Dat		From File	WorkSheet.									
5		Fu	Ill Precision	OFF	15								
6			Coefficient	95%									
7		f Bootstrap		2000									
° 9													
10													
	Zinc												
12													
13						General	Statistics						
14	Total Number of Observations 14 Number of Distinct Observ									Observations	14		
15									Numbe	er of Missing	Observations	0	
16					Minimum	21					Mean	82	
17					Maximum	220					Median	50	
18					SD	64.51				Std.	Error of Mean	17.24	
19				Coefficient	of Variation	0.787					Skewness	1.366	
20													
21							GOF Test		<u>.</u>		_		
22				Shapiro Wilk T		0.786			-	ilk GOF Tes			
23			5% S	hapiro Wilk C		0.874		Data Not		5% Significa	ance Level		
24					est Statistic	0.259		Data Nat		GOF Test			
25			5	5% Lilliefors C			5% Significant		Normal at	5% Significa	ance Level		
26					Data Not	Normai at :	5% Significan						
27					As	sumina Nor	mal Distributio						
28			95% No	ormal UCL	,	Suming Mor			UCLs (Adii	usted for Sk	ewness)		
29 30					lent's-t UCL	112.5					(Chen-1995)	117.1	
31											ohnson-1978)	113.6	
32											,		
33						Gamma	GOF Test						
34				A-D T	est Statistic	0.751		Anders	on-Darling	g Gamma G	OF Test		
35				5% A-D C	ritical Value	0.745	Da	Data Not Gamma Distributed at 5% Significance Level					
36				K-S T	est Statistic	0.233		Kolmogrov-Smirnoff Gamma GOF Test					
37				5% K-S C	ritical Value	0.231	Da	ta Not Gamr	na Distribu	ted at 5% Si	gnificance Lev	el	
38				Da	ta Not Gamr	na Distribut	ed at 5% Sigr	ificance Lev	vel				
39													
40							Statistics						
41					k hat (MLE)	2.194					orrected MLE)	1.772	
42					a hat (MLE)	37.37			Theta		orrected MLE)	46.29	
43			<u> </u>		u hat (MLE)	61.44					ias corrected)	49.61	
44			M	LE Mean (bia	s corrected)	82			\		ias corrected)	61.61	
45			A 1.		Cianifi	0.0010		۵,			e Value (0.05)	34.44	
46			Adjus	sted Level of	Significance	0.0312			Α	ujustea Chi	Square Value	32.76	
47					Δο	umina Can	nma Distributi	on					
48	QI	5% Annroxi	mate Gamma	UCL (use wi		118.1			usted Gam	ma UCL (us	e when n<50)	124.2	
49 50				. 502 (056 WI	.5.1.1.2 .00))						- mon 11-00)	1 E T. E	
50 51						Lognorma	I GOF Test						
51			S	Shapiro Wilk T	est Statistic	0.931		Shapi	ro Wilk Lo	gnormal GO	F Test		
52				hapiro Wilk C		0.874		-		-	ificance Level		
54				•	est Statistic	0.2			-	ormal GOF			
55			5	5% Lilliefors C	ritical Value	0.237			-		ificance Level		
56					Data appear	Lognormal	at 5% Signific			-			
57													

	А	В	С	D	E	F	G	Н	I	J	К	L	
58		Lognormal Statistics Minimum of Logged Data 3.045 Mean of logged Data											
59			Ν	Ainimum of L	ogged Data	3.045	Mean of logged Data 4.16						
60			N	laximum of L	ogged Data	5.394	SD of logged Data 0.7						
61													
62		Assuming Lognormal Distribution											
63	95% H-UCL 129.7 90% Chebyshe										,	128.1	
64			95% (Chebyshev (I	MVUE) UCL	149.7			97.5%	Chebyshev (MVUE) UCL	179.7	
65			99% (Chebyshev (I	MVUE) UCL	238.6							
66													
67					•		tion Free UC						
68				Data appear	to follow a	Discernible	Distribution a	at 5% Signifi	icance Leve				
69													
70		Nonparametric Distribution Free UCLs											
71		95% CLT UCL 110.4 95% Jackknife UCL								112.5			
72		95% Standard Bootstrap UCL 109.1 95% Bootstrap-t UCL									131.8		
73		95% Hall's Bootstrap UCL 113.5 95% Percentile Bootstrap UCL									110.2		
74		95% BCA Bootstrap UCL 115.8											
75				ebyshev(Mea	. ,	133.7					an, Sd) UCL	157.1	
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	189.7			99% Ch	ebyshev(Me	an, Sd) UCL	253.5	
77													
78							UCL to Use						
79					95% H-UCL	129.7							
80													
81	N		-	-							iate 95% UCI.		
82		These reco					mulation stud				d laci (2002)		
83			and Singh a		,		ons results wil			d data sets.			
84				For ad	ditional insigl	nt the user m	hay want to co	onsult a stati	stician.				
85													
86							c based UCL						
87		H-statistic o			· ·		ies of UCL95		•		inical Guide.		
88							he use of H-						
89	Use	of nonpara	netric metho	ds are prefe	erred to com	pute UCL95	tor skewed	data sets w	hich do not	tollow a gai	mma distribut	t <mark>ion.</mark>	
90													

	А	В	С	D	E	F	G	Н	I	J	К	L		
1					UCL Statis	tics for Data	Sets with N	Ion-Detects						
2		l Isor Solo	cted Options	2										
3	Dat	e/Time of Co	•		' 8:09:03 AM									
4 5			From File	WorkSheet										
6		Fu	Il Precision	OFF										
7		Confidence	Coefficient	95%	,									
8	Number o	f Bootstrap	Operations	2000										
9														
10	Total PAHs													
11							o: .:							
12			Tata	I Number of	Observations	General 14	Statistics		Numero	r of Distinct (Observations	E		
13			TOLA		observations ber of Detects	5			Numbe		Non-Detects			
14			N		stinct Detects	4			Numbe		Non-Detects			
15 16					nimum Detect				- Turnov		n Non-Detect			
17					kimum Detect						n Non-Detect			
17					ance Detects	0.293					Non-Detects			
19				Ν	lean Detects	0.46					SD Detects	0.541		
20				Me	edian Detects	0.3					CV Detects	1.177		
21				Skew	ness Detects	1.926				Kur	tosis Detects	3.867		
22				Mean of Lo	gged Detects	-1.278				SD of Log	gged Detects	1.1		
23						1								
24					Norm	al GOF Tes	t on Detects	s Only						
25	Shapiro Wilk Test Statistic 0.748 Shapiro Wilk GOF Test													
26			5% S	•	Critical Value	0.762	Detected Data Not Normal at 5% Significance Level							
27	Lilliefors Test Statistic 0.344 Lilliefors GOF Test													
28	5% Lilliefors Critical Value 0.396 Detected Data appear Normal at 5% Significance Level									vel				
29														
30 31			Kaplan-I	Meier (KM)	Statistics usir	ng Normal C	ritical Value	es and othe	r Nonparame	tric UCLs				
32					Mean	0.196					Error of Mean	0.105		
33					SD	0.35		95% KM (BCA) UCL						
34				95%	% KM (t) UCL	0.381		95% KM (Percentile Bootstrap) UCL						
35				95%	6 KM (z) UCL	0.368		N/A						
36				90% KM Che	ebyshev UCL	0.51	95% KM Chebyshev UCL 0.6							
37			97	7.5% KM Che	ebyshev UCL	0.849			!	99% KM Che	ebyshev UCL	1.236		
38														
39					Gamma GOF		etected Obs		-					
40					Test Statistic	0.416	Detecto		Anderson-Da					
41					Critical Value Test Statistic	0.69	Detecte	a data appe	ar Gamma D Kolmogrov-		-			
42					Critical Value	0.231	Detecte	d data anne	ar Gamma D			ice evel		
43 44					data appea									
44									-					
46					Gamma	Statistics or	Detected D	Data Only						
47					k hat (MLE)	1.135			k	star (bias co	rrected MLE)	0.587		
48				The	eta hat (MLE)	0.405			Theta	star (bias co	rrected MLE)	0.783		
49					nu hat (MLE)	11.35				nu star (bi	as corrected)	5.874		
50			М	ILE Mean (bi	as corrected)	0.46				MLE Sd (bi	as corrected)	0.6		
51														
52						a Kaplan-M	eier (KM) St	atistics				0.000		
53		۸ -	provimata C	hi Square V	k hat (KM) alue (8.83, α)	0.315 3.226			Adjusted C	hi Sauara V	nu hat (KM) alue (8.83, β)			
54	95%				aiue (8.83, α) when n>=50)			95% Gam	na Adjusted K					
55 56				505 (058		0.000				502 (036		0.021		
56 57				(Gamma ROS	Statistics us	ing Imputed	d Non-Dete	cts					
5/						5.4.101100 U								

	A B C D E	F	G H I J K	L							
58	GROS may not be used when data se	t has > 50%	NDs with many tied observations at multiple DLs								
59	GROS may not be used w	vhen kstar o	f detected data is small such as < 0.1								
60	For such situations, GROS me	ethod tends	to yield inflated values of UCLs and BTVs								
61	For gamma distributed detected data, BTVs an	nd UCLs ma	y be computed using garnma distribution on KM estimates								
62	Minimum	0.01	Mean	0.171							
63	Maximum	1.4	Median	0.01							
64	SD	0.374	CV	2.194							
65	k hat (MLE)	0.399	k star (bias corrected MLE)	0.361							
66	Theta hat (MLE)	0.428	Theta star (bias corrected MLE)	0.473							
67	nu hat (MLE)	11.18	nu star (bias corrected)	10.12							
68	MLE Mean (bias corrected)	0.171	MLE Sd (bias corrected)	0.284							
69			Adjusted Level of Significance (β)	0.0312 3.519							
70	Approximate Chi Square Value (10.12, α)	4.014	5 1 (<i>7</i> 1 <i>7</i>								
71	95% Gamma Approximate UCL (use when n>=50)	0.43	95% Gamma Adjusted UCL (use when n<50)	0.491							
72											
73	5	F Test on D	etected Observations Only								
74	Shapiro Wilk Test Statistic	0.901	Shapiro Wilk GOF Test								
75	5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Lev	vel							
76	Lilliefors Test Statistic	0.224	Lilliefors GOF Test								
77		5% Lilliefors Critical Value 0.396 Detected Data appear Lognormal at 5% Significance Level									
78	Detected Data appear Lognormal at 5% Significance Level										
79											
80	-		Using Imputed Non-Detects								
81	Mean in Original Scale	0.171	Mean in Log Scale	-3.876							
82	SD in Original Scale	0.374	SD in Log Scale	2.409							
83	95% t UCL (assumes normality of ROS data)	0.348	95% Percentile Bootstrap UCL	0.349							
84	95% BCA Bootstrap UCL	0.426	95% Bootstrap t UCL	0.762							
85	95% H-UCL (Log ROS)	14.97									
86											
87	5 5		tes when Detected data are Lognormally Distributed	0.000							
88	KM Mean (logged)	-2.382 1.012	95% H-UCL (KM -Log)	0.339							
89	KM Stondard Error of Moon (logged)	0.302	95% Critical H Value (KM-Log)	2.811							
90	KM Standard Error of Mean (logged)	0.302									
91		2 (/ 10	latistics								
92	DL/2 Normal	DL/2 3	DL/2 Log-Transformed								
93	Mean in Original Scale	0.18	Mean in Log Scale	-2.828							
94	SD in Original Scale	0.10	SD in Log Scale	1.345							
95	95% t UCL (Assumes normality)	0.356	95% H-Stat UCL	0.52							
96			ded for comparisons and historical reasons	0.52							
97		anou, prom									
98	Nonparame	tric Distribu	tion Free UCL Statistics								
99	-		mal Distributed at 5% Significance Level								
100 101											
101		Sugaested	UCL to Use								
102	95% KM (t) UCL	0.381	95% KM (Percentile Bootstrap) UCL	N/A							
103			mended UCL(s) not available!								
105 106	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.								
106			a size, data distribution, and skewness.								
107		•	nulation studies summarized in Singh, Maichle, and Lee (2006).								
108			ts; for additional insight the user may want to consult a statisticia	ın.							
110											

	A B C	D E	F	G H	I J K	L						
1		UCL Statis	tics for Data	Sets with Non-Detects								
2												
3	User Selected Options	00/10/0017 0 11 00 004										
4		23/10/2017 8:11:06 AM WorkSheet.xls										
5		OFF										
6		95%										
7		Number of Bootstrap Operations 2000										
0 9												
10	BaP											
11												
12			General S	tatistics								
13	Total	Number of Observations	14		Number of Distinct Observations	3						
14		Number of Detects	3		Number of Non-Detects	11						
15	Nu	Imber of Distinct Detects	2		Number of Distinct Non-Detects	1						
16		Minimum Detect	0.06		Minimum Non-Detect	0.05						
17		Maximum Detect	0.1		Maximum Non-Detect	0.05						
18		Variance Detects			Percent Non-Detects	78.57%						
19		Mean Detects	0.0733		SD Detects	0.0231 0.315						
20		Median Detects Skewness Detects	1.732		CV Detects Kurtosis Detects	0.315 N/A						
21		Mean of Logged Detects	-2.643		SD of Logged Detects	0.295						
22		Mean of Logged Delects	-2.043		SD of Logged Delects	0.235						
23 24		Warning: D	ata set has o	nly 3 Detected Values.								
24	Thi			ful or reliable statistics and	l estimates.							
26		<u> </u>										
27												
28		Norm	al GOF Test	on Detects Only								
29	S	hapiro Wilk Test Statistic	0.75	Sh	apiro Wilk GOF Test							
30	5% Sł	napiro Wilk Critical Value	0.767	Detected Data N	ot Normal at 5% Significance Level							
31		Lilliefors Test Statistic	0.385		Lilliefors GOF Test							
32	5'	% Lilliefors Critical Value	0.512		ear Normal at 5% Significance Lev	el						
33		Detected Data appear	Approximate	Normal at 5% Significance	e Level							
34	Kaplan M	laiar (KM) Statistica usir	a Normal Cri	tical Values and other New	anarametria LICI a							
35	каріан-м	Mean	0.055	itical Values and other Nor	Standard Error of Mean	0.00424						
36		SD	0.033		95% KM (BCA) UCL	0.00424 N/A						
37 38		95% KM (t) UCL	0.0625	95	% KM (Percentile Bootstrap) UCL	N/A						
39		95% KM (z) UCL	0.062									
40			0.002		95% KM Bootstrap t UCL	N/A						
	9	0% KM Chebyshev UCL	0.0677		95% KM Bootstrap t UCL 95% KM Chebyshev UCL	N/A 0.0735						
41					•							
		0% KM Chebyshev UCL	0.0677		95% KM Chebyshev UCL	0.0735						
41		0% KM Chebyshev UCL 5% KM Chebyshev UCL	0.0677 0.0815	ected Observations Only	95% KM Chebyshev UCL	0.0735						
41 42		0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF	0.0677 0.0815 Tests on Det	ected Observations Only Perform GOF Test	95% KM Chebyshev UCL	0.0735						
41 42 43		0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End	0.0677 0.0815 Tests on Det	Perform GOF Test	95% KM Chebyshev UCL	0.0735						
41 42 43 44		0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma	0.0677 0.0815 Tests on Det bugh Data to Statistics on	-	95% KM Chebyshev UCL 99% KM Chebyshev UCL	0.0735						
41 42 43 44 45 46 47		0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61	Perform GOF Test	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE)	0.0735 0.0972						
41 42 43 44 45 46 47 48		0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61 0.00441	Perform GOF Test	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE)	0.0735 0.0972 N/A						
41 42 43 44 45 46 47 48 49	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61 0.00441 99.69	Perform GOF Test	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.0735 0.0972 N/A N/A N/A						
41 42 43 44 45 46 47 48 49 50	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61 0.00441	Perform GOF Test	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE)	0.0735 0.0972 N/A						
41 42 43 44 45 46 47 48 49 50 51	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61 0.00441 99.69 N/A	Perform GOF Test	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.0735 0.0972 N/A N/A N/A						
41 42 43 44 45 46 47 48 49 50 51 52	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61 0.00441 99.69 N/A	Perform GOF Test	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.0735 0.0972 N/A N/A N/A						
41 42 43 44 45 46 47 48 49 50 51 52 53	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected) Gamm	0.0677 0.0815 Tests on Det Dugh Data to Statistics on 16.61 0.00441 99.69 N/A	Perform GOF Test Detected Data Only ier (KM) Statistics	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	0.0735 0.0972 N/A N/A N/A N/A						
41 42 43 44 45 46 47 48 49 50 51 52	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected) Gamm	0.0677 0.0815 Tests on Det Dugh Data to Statistics on 16.61 0.00441 99.69 N/A	Perform GOF Test Detected Data Only ier (KM) Statistics	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected)	0.0735 0.0972 N/A N/A N/A N/A S04.6						
41 42 43 44 45 46 47 48 49 50 51 51 52 53 54	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected) Gamm k hat (KM) Square Value (504.60, α)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61 0.00441 99.69 N/A N/A	Perform GOF Test Detected Data Only ier (KM) Statistics Adju:	95% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected)	0.0735 0.0972 N/A N/A N/A N/A 504.6 0.0312						
41 42 43 44 45 46 47 48 49 50 51 51 52 53 54 55	97.	0% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected) Gamm k hat (KM) Square Value (504.60, α)	0.0677 0.0815 Tests on Det bugh Data to Statistics on 16.61 0.00441 99.69 N/A a Kaplan-Me 18.02 453.5	Perform GOF Test Detected Data Only ier (KM) Statistics Adju:	95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Sted Chi Square Value (504.60, β)	0.0735 0.0972 N/A N/A N/A N/A 504.6 0.0312 447.1						

	А	В	С	D	E	F	G	Н	I	J	К	L			
58				Lo	ognormal GC	F Test on D	etected Obs	ervations On	ly						
59			SI	napiro Wilk ⁻	Fest Statistic	0.75			Shapiro Wi	lk GOF Test					
60			5% Sł	napiro Wilk (Critical Value	0.767	Detected Data Not Lognormal at 5% Significance Level								
61				Lilliefors	Fest Statistic	0.385			Lilliefors	GOF Test					
62			5	% Lilliefors (Critical Value	0.512	Detected Data appear Lognormal at 5% Significance Level								
63				Detected Da	ata appear A	Approximate	Lognormal a	t 5% Signific	ance Leve	l					
64															
65				Lo	gnormal RO	S Statistics	Using Impute	d Non-Detec	ts						
66				Mean in O	riginal Scale	0.0315				Mean i	n Log Scale	-3.743			
67				SD in O	riginal Scale	0.0261				SD i	n Log Scale	0.785			
68		95% t L	JCL (assume	s normality o	of ROS data)	0.0438			95%	Percentile Bo	otstrap UCL	0.0433			
69			g		otstrap UCL	0.0468				95% Boo	tstrap t UCL	0.0499			
70				95% H-UC	L (Log ROS)	0.055									
71															
72	UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed														
73				KM M	ean (logged)	-2.92				95% H-UC	L (KM -Log)	0.0601			
74	KM SD (logged)					0.183	95% Critical H Value (KM-Log) 1.80								
75			KM Standar	d Error of M	ean (logged)	0.0598									
76															
77						DL/2 S	tatistics								
78			DL/2 N	ormal					DL/2 Log-T	ransformed					
79				Mean in O	riginal Scale	0.0354				Mean i	n Log Scale	-3.465			
80					riginal Scale	0.0225					n Log Scale	0.46			
81				•	es normality)	0.046					H-Stat UCL	0.0449			
82			DL/2 is	not a reco	mmended m	ethod, provi	ded for comp	parisons and	historical r	easons					
83															
84					•		tion Free UC								
85			Dete	cted Data a	appear Appro	oximate Nor	mal Distribut	ed at 5% Sig	inificance L	_evel					
86															
87							UCL to Use								
88					5 KM (t) UCL	0.0625				Percentile Boo	otstrap) UCL	N/A			
89				Warn	ing: One or I	more Recom	mended UCI	L(s) not avail	able!						
90			-												
91	N	lote: Suggest	tions regardir								ate 95% UCI	L-			
92							a size, data d								
93			mendations												
94	Hov	wever, simula	ations results	will not cov	er all Real W	orld data set	ts; for addition	nal insight the	e user may	want to cons	ult a statistic	ian.			
95															